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Abstract

Advances in functional MRI (fMRI) allow mapping an individual’s brain function in vivo. Task fMRI can localize domain-specific
regions of cognitive processing or functional regions of interest (fROIs) within an individual. Moreover, data from resting state (no
task) fMRI can be used to define an individual’s connectome, which can characterize that individual’s functional organization via
connectivity-based parcellations. However, can connectivity-based parcellations alone predict an individual’s fROIs? Here, we
describe an approach to compute individualized rs-fROIs (i.e., regions that correspond to given fROI constructed using only rest-
ing state data) for motor control, working memory, high-level vision, and language comprehension. The rs-fROIs were computed
and validated using a large sample of young adults (n ¼ 1,018) with resting state and task fMRI from the Human Connectome
Project. First, resting state parcellations were defined across a sequence of resolutions from broadscale to fine-grained networks
in a training group of 500 individuals. Second, 21 rs-fROIs were defined from the training group by identifying the rs network
that most closely matched task-defined fROIs across all individuals. Third, the selectivity of rs-fROIs was investigated in a training
set of the remaining 518 individuals. All computed rs-fROIs were indeed selective for their preferred category. Critically, the rs-
fROIs had higher selectivity than probabilistic atlas parcels for nearly all fROIs. In conclusion, we present a potential approach to
define selective fROIs on an individual-level circumventing the need for multiple task-based localizers.

NEW & NOTEWORTHY We compute individualized resting state parcels that identify an individual’s own functional regions of in-
terest (fROIs) for high-level vision, language comprehension, motor control, and working memory, using only their functional con-
nectome. This approach demonstrates a rapid and powerful alternative for finding a large set of fROIs in an individual, using
only their unique connectivity pattern, which does not require the costly acquisition of multiple fMRI localizer tasks.

fMRI; functional connectivity; functional regions of interest; individual differences; parcellation

A PERSONALIZED CORTICAL ATLAS FOR
FUNCTIONAL REGIONS OF INTEREST

One of the oldest endeavors in neuroscience concerns map-
ping the human brain. Early brain mapping approaches
delineated regions based on the cytoarchitecture in postmor-
tem brains (1). Advances in neuroimaging, specifically MRI,
allowed for the development of atlases in vivo [2; for review,
see Dickie et al. (3)]. In both cases, regions of the brain are
grouped based on structural similarities, such as cell types, an-
atomical features, or landmarks. More recently, parcellations
have been developed using intrinsic functional connectivity
measured by resting state fMRI [for review, see Eickhoff et al.
(4)], which capitalize on systematic cofluctuations in brain
regions at rest (i.e., without a task). Atlases have practical

advances, such as providing a common framework across dif-
ferent studies and populations and reducing high-dimensional
data. Furthermore, a major goal in mapping the brain is to
expand our theoretical understanding of how the brain oper-
ates and supports cognition. Accordingly, atlases should corre-
spond to brain organization and/or function.

Functional connectivity (frequently characterized as a con-
nectome or full pairwise matrices containing the cofluctua-
tions of brain units) is ideal for studying the functional
organization of the brain. Analyses of connectomes have
revealed robust resting state networks across the lifespan (5)
andwithin individuals (6) characterizing themacroscale orga-
nization of the human brain. Group-level resting state net-
works are associated with different cognitive processes and
behavioral domains (7) and can be used alongside task data to
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furthermap networks underlying specific cognitive processes,
such as language (8, 9). These resting state patterns vary by
individual and relate to individual differences in behavior
(10–12). Connectivity differences are also systematically
observed in clinical populations (13–15). Importantly, individ-
ual resting state patterns are predictive of that individual’s
neural responses (16–18). These close links to behavior, neural
activity, and individual differences make functional connec-
tivity an ideal candidate for parcellating an individual’s brain
into units corresponding to cognitive processing.

Some cognitive processes, such as the processing of lan-
guage or faces, are supported by a given region (or regions) of
interest specialized for that specific cognitive function (19).
These functional regions of interest (fROIs) can be reliably
identified on an individual-level using task-based fMRI.
Robust subject-level fROIs can be localized in domains includ-
ing motor control (20, 21), high-level vision (22–25), and lan-
guage (26–29). For example, face-specialized regions, such as
the fusiform face area (30), can be defined by selecting voxels
that show a higher response to pictures of faces compared
with pictures of objects. Using an individual’s fROIs can
account for individual differences in the location, size, and
shape of these fROIs (31). fROIs also have statistical advantages
due to limiting the potential search space and number of tests
and practical advances in computational modeling through
reducing the number of components (32). Finally, analyses of
fROIs present theoretical advantages by allowing researchers
to study unique mechanisms within a specific region. For
example, evidence has shown that not all scene-processing
fROIs have the same functions (33), so if a researcher is inter-
ested in scene categorization, as opposed to navigation, focus-
ing on a region specialized for that specific cognitive process,
such as the parahippocampal place area (PPA), would be ideal
for studying the underlying neural mechanisms. However, to
avoid circular analyses (34), these regions have to be identified
using an additional task-based localizer scan. Here, we explore
the feasibility of using only parcellated functional connectivity
to identify key fROIs without a localizer scan across multiple
domains of cognitive processing, including motor control, cat-
egory-specific visual regions, workingmemory, and language.

Althoughmany individual-level atlases based on functional
connectivity have been proposed [for review, see Arslan et al.
(35)], the correspondence of resting state parcels to domain-
specific modules, or fROIs, is unknown. Broadly, individual-
specific resting state parcellations resemble activity during a
task, as their boundaries tend to correspond to whole brain
task activity (6, 36–38). This correspondence can be quanti-
fied using the similarity between the resulting parcellations
overall and task activity across the brain, e.g., by assessing the
mean variability of z-scores in parcels (37). Critically, individ-
ualized parcellations appear to better capture task data than
group parcellations (37). Previous approaches consider the
entire parcellation and whole brain activity, but can we iden-
tify single resting state networks that can approximate key
localized functional units? Recent work has demonstrated the
potential for defining domain-specific networks by using an
individual’s functional connectivity to define an individual-
specific language network but requires significant user input
(either by manually selecting a seed or individual tuning of
clustering parameters), limiting the ease of applying this
approach to a large number of subjects (39).

Here, we propose an automated method to compute fROIs
using only resting state functional connectivity (rs-fROIs)
that approximate fROIs for motor control, high-level vision,
working memory, and language comprehension. First, net-
works from resting state parcellations are matched to task
data to identify individualized rs-fROIs that have a high
overlap with an individual’s task-fROIs in the training group
of 500 individuals from the Human Connectome Project
(40). Second, these rs-fROIs are computed for the test group
of 518 individuals using only resting state functional connec-
tivity. Third, we determine if the rs-fROIs in the test set are
selective for the expected domain. Fourth, we compare the
selectivity of the individualized rs-fROIs to group-level prob-
abilistic atlas parcels. Finally, we determine how the bounda-
ries of the rs-fROIs are preserved across different resolutions
of resting state parcellations.

MATERIALS AND METHODS
We used resting state fMRI data from a large cohort from

the Human Connectome Project (40) to define parcellations
of functional connectivity. From these parcellations, we
identified networks that approximate the location of an indi-
vidual’s fROI. These individualized networks, constrained
by the search space, are referred to as rs-fROIs, as they can
be computed for an individual using only resting state func-
tional connectivity. Figure 1 shows an overview of the parcel-
lation approach, definition of rs-fROIs, and validation of rs-
fROIs, described in this paper, which is further elaborated
under Resting State Parcellations. To summarize, based on
dense vertex-to-vertex resting state functional connectivity,
we first defined group-level parcellations using k-means
clustering for k ¼ 2 to 200 total networks. Then, individual-
specific parcellations for each k were computed using k-
nearest neighbor classification to the group-defined cluster
centroids, in an independent set of subjects. To explore the
use of resting state parcellations to approximate an individu-
al’s fROIs, we next identified rs-fROIs from the above parcel-
lations. In the training stage (Fig. 1B), we identified the
network, from all parcellations, that had the highest overlap
with a given fROI defined from actual task data (i.e., task-
fROI), averaging across individuals. The left-hand (LH) fROI
is shown as an example. In the test stage (Fig. 1C), the rs-fROI
is computed from the resting state data (no task data) by
determining the personalized parcellation of the network
identified in the training stage.

Data

The data were obtained from the Human Connectome
Project [HCP; Van Essen et al. (40)]. All individuals (n ¼ 1,113)
were scanned at Washington University in St. Louis (WashU).
The study was approved by the WashU institutional review
board, and all participants provided written informed con-
sent. The 1,018 HCP subjects (546 females, 472 males)
included in this study completed 2 days of scanning using the
customized Siemens Skyra 3 T MRI scanner (Siemens,
Erlangen, Germany) at WashU. High-resolution (0.7mm3 iso-
tropic voxels) T1-weighted and T2-weighted structural images
were collected for all subjects. An additional 28 individuals
rescanned within a year of their first sessions (who were also
in the group of individuals in the test stage in Fig. 1) were
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included to explore the effect of shorter resting state scans on
the resulting rs-fROIs. The resting state runs comprised of gra-
dient-echo planar imaging sequences (TE/TR ¼ 33.1/720 ms,
flip angle¼ 52�, multiband factor¼ 8, 72 slices, 2 mm isotropic
voxels). Two resting state runs were collected each day, for a

total of four 15-min runs (1,200 volumes) per individual. On
each day, one run was encoded in a right-to-left direction and
the other was encoded in a left-to-right direction. Subjects
were instructed to keep their eyes open with relaxed fixation
on a projected cross on a dark background.
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The task data used to determine and validate rs-fROIs also
come from the HCP (41). Here, we explore three tasks with key
contrasts chosen to localize fROIs in the domains of motor
function (e.g., hand – average), high-level vision (e.g., faces –

average), working memory (2 back – 0 back), and language
comprehension (e.g., story – math). The motor strip mapping
task involved blocks of moving left/right hands and feet and
tongue following a visual cue. The category representations
(tools, places, faces, and bodies) were embedded in a 2-back
and 0-back working memory task. Finally, the task chosen to
localize language comprehension included blocks where par-
ticipants either: listened to a short story and answered compre-
hension questions (story condition) or listened to and solved
addition and subtraction problems (math condition). Further
task parameters and group-level results are detailed in the
study by Barch et al. (40). fMRI acquisition parameters were
identical to those used in the resting state scans, apart from
the duration of the tasks. Two runs were collected per task.

Preprocessing

The resting state data were preprocessed following the HCP
minimal preprocessing pipeline [Glasser et al. (42)]. In brief,
preprocessing included artifact correction (gradient nonlinear-
ity and echo-planar imaging distortion correction), motion
correction, automated independent component analysis tem-
poral denoising using ICA-FIX (43), and registration to MNI152
template space. The volume time series were then mapped to
the standard CIFTI grayordinate space (91,282 vertices).
Individual connectomes were defined as the Fisher-trans-
formed Pearson correlation between the time series (concaten-
ated across all 4 runs) of each cortical grayordinate. To define
the group-level connectome, we randomly sampled 500 sub-
jects without replacement from the 1,018 HCP subjects with
four 15-min runs of resting state data (training group). The
remaining 518 subjects comprise the test group. For the 28
individuals in the retest group, four individual connectomes
were defined for each individual, for each of the four runs
from the retest session (e.g., connectomes were defined from a
single 15-min resting state run, as opposed to concatenated
60-min of resting state data). For preprocessing of the task
data, we again used the HCP pipeline [(41, 42) using FEAT
from FSL (FMRIB Software Library)] and selected a 12-mm
smoothing kernel to ensuremaximal overlap across the group.

Resting State Parcellations
Group-level parcellations were calculated from the full con-

nectome using a k-means algorithm (44, 45) along a sequence

of k (number of clusters) from k¼ 2 to 200, with five replicates
and a cosine distance metric (1 minus the cosine of the angle
between points). Individual-level parcellations were defined
using k-nearest neighbor (k-NN) classification.

The k-centroids were specified according to the cent-
roids from the above group-level parcellations. Vertices
were assigned to a network based on which the network
maximized the similarity (cosine) between the individual
vertex’s connectivity profile in that individual and a given
network’s centroid connectivity profile. Individual parcel-
lations were then mildly denoised via morphological open-
ing (46), i.e., one step of dilation followed by one step of
erosion, which preserves shape while filling in single-ver-
tex holes.

rs-fROI Training Stage

Here, we focus on 21 putative fROIs: five motor regions
(right hand, left hand, right foot, left foot, and tongue), six
language regions [Fedorenko et al. (26)], one set of distrib-
uted regions corresponding to working memory, and nine
high-level visual regions (23). The visual regions included
two tool regions, lateral occipital (tool 1: LO) and posterior
fusiform sulcus (tool 2: PFS); three place regions, parahip-
pocampal place area (place 1: PPA), retrosplenial cortex
(place 2: RSC), and transverse occipital sulcus (place 3:
TOS); three face regions, fusiform face area (face 1: FFA),
occipital face area (face 2: OFA), and superior temporal
sulcus (face 3: STS), and one body region, extrastriate
body area (EBA). Task fROIs were defined on an individual
level based on group-constrained subject-specific (GSS)
fROIs (26). The GSS method consists of two steps: 1) mask
individual subject data with a domain-specific search
space and 2) define individual task activation for a given
contrast.

A search space is the region of the cortex where a puta-
tive fROI is most likely to be in most individuals. The
search spaces for high-level vision and language compre-
hension are defined from previous literature (23, 26),
which constructed search spaces for these domains in in-
dependent localization datasets. However, search spaces
have not been explicitly created for motor control and
working memory, so for the motor and working memory
fROIs, search spaces were defined from the HCP data as
areas with group overlap above 60%. Group overlap was
defined as the percentage of individuals with significant
activation (P < 0.05) at a given vertex. Discontinuous
components were separated, and any region smaller than

Figure 1. Schematic. A: first, the high-resolution connectome is computed from the pairwise correlations of the BOLD time course of each vertex. The
pictured timeseries are randomly generated. Connectomes are calculated on an individual level. The group-average connectome of 500 random sub-
jects is pictured. Second, from this group-level connectome, k-means is run from k¼ 2 to 200 clusters to define group-level parcellations. Third, individ-
ual-level parcellations are calculated for the remaining 518 subjects using k-nearest neighbor’s classification (k-NN). Three subject’s parcellations are
shown for the k ¼ 7 parcellation. B: in the training stage, an individual’s actual fROI (task-fROI) is matched to all resting state parcellations (from k ¼ 2 to
k ¼ 200 networks). For each subject in the n ¼ 500 training set, a task-fROI is defined from the task data using the group-constrained search space
method (26). Then, the dice overlap is computed between that individual’s task-fROI and all networks (e.g., network 1 to k in each k-parcellation) within
each k-resting state parcellation. The final rs-fROI that will be applied to the test set is selected by finding the network with the highest dice across all
subjects and parcellations. For example, the identified rs-fROI for the Left Hand (LH) fROI is network #53 from the k¼ 198 network resting state parcella-
tion. C: then, for each subject in the testing group (n ¼ 518), the rs-fROI is computed using only the resting state data. From an individual’s resting state
connectome, each vertex is assigned to a given network using k-nearest neighbor classification based on similarity of its functional connectivity to the
centroids of the k-parcellation identified in the training stage (e.g., k ¼ 198 for LH). Then, the rs-fROI for that individual is computed by selecting the top
network identified in the training stage (e.g., network #53 from k ¼ 198). Note that the rs-fROIs identified in the testing group are computed using only
that individual’s resting state functional connectivity. fROI, functional region of interest; rs, resting state.
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500 mm2 was excluded. An insula component for the left
foot – average contrast was not included. Finally, the
remaining components were dilated on the surface with a
distance of 5mm2 kernel to provide a large enough search
space to ensure we can reliably identify fROIs in individ-
ual subjects.

The language and vision search spaces were defined from
external sources. The language search spaces were down-
loaded from the Fedorenko Lab localizers (https://evlab.mit.
edu/funcloc/) and consisted of six parcels originally reported

in Fedorenko et al. (26). We used the “updated” version of
these parcels, which contained data from a total of 220 indi-
viduals. The visual category-selective search spaces came
from a similar approach by Julian et al. (23). All search spaces,
including the motor and working memory search spaces
described earlier, are shown in Fig. 2. The task fROI was then
defined by masking an individual subject’s task activation
within the search space. Namely, individual task fROIs for a
given contrast were defined as any vertex within a specific
search space where P< 0.05 for the appropriate contrast.

Figure 2. Search spaces for functional regions of interest (fROIs). A: the motor search spaces are identified for each body part (e.g., right hand – the aver-
age of all others is identified in red). B: for the working memory task, five contrasts were used to localize activity related to tools, places, faces, bodies,
and working memory. Three contrasts included multiple search spaces and those different components are separated by color: tool includes lateral
occipital (tool 1: LO) and posterior fusiform sulcus (tool 2: PFS); place includes parahippocampal place area (place 1: PPA), retrosplenial cortex (place 2:
RSC), and transverse occipital sulcus (place 3: TOS); and face includes fusiform face area (face 1: FFA), occipital face area (face 2: OFA), and superior
temporal sulcus (face 3: STS). C: in the language comprehension task, the six different search spaces were obtained from Fedorenko et al. (26).
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For every contrast and every subject in the training
group of 500, we calculated the overlap (quantified using
the dice coefficient) between a given task fROI and every
individualized resting state cluster (network) for all parcel-
lations. Associated group-level resting state networks were
identified by finding the network with the highest mean
overlap across the training group. The final matched net-
work was masked by the search space to create the rs-fROI.

rs-fROI Test Group

In the remaining 518 individuals, rs-fROIs were defined by
computing individualized resting state parcellations for all k
total networks defined in the training stage. Then, for a given
fROI, the matched network number was selected and
masked by the search space to define an rs-fROI. To validate
that rs-fROIs were indeed selective for the expected category,

Figure 3. Resting state (rs)-fROIs. The identified functional regions of interest constructed from resting state functional connectivity (i.e., rs-fROIs) with
the highest overlap with a given contrast/search space in the motor task, working memory task, and language task are plotted on the surface for each
putative fROI. The motor rs-fROIs are identified for each body part (e.g., right hand – the average of all others is identified in red). For the working mem-
ory task, five contrasts were used to localize activity related to tools, places, faces, bodies, and working memory. Three contrasts included multiple
search spaces and those different components are separated by color: tool includes lateral occipital (tool 1: LO) and posterior fusiform sulcus (tool 2:
PFS); place includes parahippocampal place area (place 1: PPA), retrosplenial cortex (place 2: RSC), and transverse occipital sulcus (place 3: TOS); and
face includes fusiform face area (face 1: FFA), occipital face area (face 2: OFA), and superior temporal sulcus (face 3: STS). In the language comprehen-
sion task, only one contrast was used (Story – Math), but six different components were localized using search spaces from Fedorenko et al. (26). fROI,
functional region of interest.
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we computed selectivity in each region for the 518 individu-
als in the test group. We report the mean percent signal
change (PSC) for each condition in each task. For the motor
regions, the contrast category was the mean of all of the
other categories (e.g., selectivity for the right-hand region
was based on the PSC of the right hand – the average PSC of
the left hand, right foot, left foot, and tongue). For the high-
level visual regions (preferred categories of faces, bodies, or
scenes), the contrast was the PSC response to tools. The tool
regions (LO and PFS) are excluded from this analysis, as
there was no scrambled tool category (23, 41). Finally, the
contrasts for the working memory region and language com-
prehension regions were 2-back versus 0-back and story ver-
sus math, respectively. Significant selectivity was assessed
using a two-sided paired t test with the alternate hypothesis
that the PSC of the expected category was different than the
PSC of the contrast category. The same procedure for com-
puting and validating rs-fROIs was followed in the 28 retest
individuals. Note that rs-fROIs were computed for all four
connectomes (from 15 min of data) per retest individual,
then the PSCs for each category were averaged within the
individual across the four runs.

Finally, we explored whether these individualized rs-fROIs
exhibit higher selectivity than group-level probabilistic atlas
parcels. First, we compared the selectivity of the search spaces
described above (Fig. 2) to our identified rs-fROIs. Second, we
compare the rs-fROIs to three atlases developed for functional
modules across motor control, language, and vision. These
atlases are the hand motor area atlas (HAMOTA) of regions
involved inmotor control of the hand (47), the visual functional
atlas (visfAtlas) which includes category-selective regions (48),

and the sentence supramodal areas atlas (SENSAAS) of lan-
guage, specifically sentence processing (9).

Parcels from these atlases were matched to a putative fROI
based on overlap with the appropriate search space. For
HAMOTA, the left-hand fROI (on the left hemisphere) was
matched to prec6 (S_precentral-6), rol2 (S_rolando-2), rol3
(S_rolando-3), rol4 (S_rolando-4), and post2 (S_rostcentral-2);
and the left-hand fROI (on the right hemisphere) was matched
to the right hemispheric versions of those same regions. For the
visfAtlas, the following fROIs were matched to these corre-
sponding parcels: the FFA includes the midlateral fusiform
gyrus (mFus) and posterior lateral fusiform gyrus (pFus);
the OFA includes the bilateral inferior occipital gyrus (IOG); the
EBA includes the bilateral inferior temporal gyrus (ITG),middle
temporal gyrus (MTG), and lateral occipital sulcus (LOS); the
PPA includes the bilateral collateral sulcus (COS); and the TOS
includes the right transverse occipital sulcus (rhTOS). Finally,
for SENSAAS, the language fROIs were matched to these corre-
sponding parcels: language 1 includes SMG7 (G_supramarginal-
7), STS3 (S_sup_temporal-3), STS4 (S_sup_temporal-4), T2_3
(G_temporal_mid-3), and T2_4 (G_temporal_mid-4); language 2
includes T1_4 (G_temporal_Sup-4), STS1 (S_sup_temporal-1),
and STS2 (S_sup_temporal-2); language 3 includes AG2
(G_angular-2); language 4 includes f2_2 (S_inf_frontal-2) and F3t
(G_frontal_inf_tri-1); language 5 includes prec4 (S_precentral-4);
and language 6 includes F3O1 (G_frontal_inf_orb-1), INSa2
(G_insula-anterior-2), and INSa3 (G_insula-anterior-3). Note
that all these regions are part of the core sentence processing
network (SENT_CORE).

In all comparisons of our rs-fROIs to matched atlas parcels
and search spaces, significance was assessed using a two-

Figure 4. Selectivity of rs-fROIs. Each panel
shows the percent signal change for all condi-
tions of interest within a putative functional
region of interest. The height of the bar shows
the mean percent signal change, and the
error bars show the standard error of the
mean. FFA, fusiform face area; fROI, functional
region of interest; LO, lateral occipital; OFA,
occipital face area; PFS, posterior fusiform sul-
cus; PPA, parahippocampal place area; rs,
resting state; RSC, retrosplenial cortex; TOS,
transverse occipital sulcus.
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sided paired t-test with the alternate hypothesis that the
mean selectivity of the rs-fROI is different than the mean se-
lectivity of the search space or atlas parcels. Bonferroni–
Holm corrections (49) are used throughout to access signifi-
cance, but P values presented in all tables are the raw uncor-
rected P values. A positive T-statistic indicates the mean
selectivity is higher for the rs-fROI.

RESULTS

Identifying rs-fROIs

First, we identified rs-fROIs constructed from individual-
ized resting state functional connectivity parcellations corre-
sponding to putative fROIs for motion, working memory,
high-level vision, and language comprehension (Fig. 3). In
the training set of 500 individuals, we searched through ev-
ery network in every parcellation resolution (from 2 to 200
networks) and calculated the overlap between that individu-
al’s resting state network in the parcellation and their task-
fROI (i.e., defined from their task data). Note that because
the individual parcellations are computed from group cent-
roids, the network labels are consistent across individuals
(e.g., network #5 in the k¼ 30 network parcellation is consid-
ered to be the same network for every subject). Then, the rs-
fROI is defined by the overlapping region of the best match-
ing networks and the search space.

We identified rs-fROIs for five motor regions (for right
hand, left hand, right foot, left foot, and tongue), a distrib-
uted working memory network (defined using the contrast 2-
back–0-back in the embedded n-back task), nine high-level
visual regions [3 place regions, 3 face regions, 2 tool regions,
and 1 body region; Julian et al. (23)], and six language regions
[from Fedorenko et al. (26)]. The matched region’s k resolu-
tion and network number are listed in Supplemental Table
S1. For example, the network that was found to best approxi-
mate the PPA was cluster #139 in the k ¼ 167 network parcel-
lation. These rs-fROIs can be identified for new out-of-
sample subjects using the centroids identified in the group-
level parcellation. In Fig. 3, note the group-level rs-fROIs
(defined from the group parcellation of 500 individuals) are
plotted, but the individualized versions of these rs-fROIs are
used for the following analyses.

Selectivity of rs-fROIs

Next, we determined the selectivity of these rs-fROIs in the
remaining 518 individuals. Note that we only compared fROIs
that we could extract selectivity from, given the HCP task data
[tool regions were excluded due to the absence of a scrambled
tool/object condition; Barch et al. (40), Julian et al. (23)].
Figure 4 shows the average percent signal change (PSC) for
each condition. If a given rs-fROI is deemed selective for its
preferred condition, then the PSC for that condition would be
significantly greater than the PSC for its most standard con-
trast condition. Based on the mean PSCs shown in Fig. 4, this
is the case for nearly every rs-fROI. To determine if selectivity
was observed on an individual level, selectivity was quantified
as the difference between the PSC of the expected preferred
category minus the PSC of the contrast category (i.e., for
motor fROIs, the contrast category is the average of all non-
preferred categories; for the high-level vision fROIs, the

contrast category is tools; see MATERIALS AND METHODS). The P
values for each rs-fROI are listed in Table 1. Note that a few
individuals did not have any fMRI data for a given task, result-
ing in different degrees of freedom. After accounting for mul-
tiple comparisons with a Bonferroni–Holm correction, all rs-
fROIs were significantly selective for their category of interest.

To explore if shorter resting state runs still yield selective
rs-fROIs, we computed rs-fROIsv for a retest subset of 28 of
the 518 individuals who were scanned again within a year of
the original visits. Instead of using the full 60-min resting
state data, concatenated across four runs, we instead only
used single 15-min runs. The P values for the selectivity of
the rs-fROIs defined using shorter resting state runs for each
fROI are listed in Table 2 (note that 1 individual did not have
data for the language comprehension task). All regions
exhibited significant selectivity for the expected category,
except for language 5 (Bonferroni–Holm corrected P value ¼
0.975), and the OFA (Bonferroni–Holm corrected P value ¼
0.397). As this duration of resting state data is more congru-
ent with the scanning protocols in most laboratories, this
substantiates the plausibility of using only resting state data
to define selective fROIs in a typical research setting.

Comparison to Probabilistic Atlas Parcels

However, is this selectivity better than the selectivity of
group-level probabilistic parcels? Generating individualized
resting state functional parcellations is time-consuming and
computationally demanding, so we tested if the rs-fROIs out-
performed the search spaces (23, 26, 41) or parcels from
atlases specifically developed for functional modules includ-
ing the handmotor area atlas (HAMOTA) of regions involved
in motor control in the hand (47), the visual functional atlas
(visfAtlas) which includes category-selective regions (48),
and the sentence supramodal areas atlas (SENSAAS) of lan-
guage, specifically sentence processing (9). We used the same

Table 1. Selectivity of personalized rs-fROIs

Putative fROI rs-fROI Selectivity (P Value) T Statistic

Right hand 5.36 � 10�219 T(514) ¼ 55.44
Left hand 2.12 � 10�241 T(514) ¼ 62.21
Right foot 1.57 � 10�223 T(514) ¼ 56.76
Left foot 1.48 � 10�225 T(514) ¼ 57.36
Tongue 2.47 � 10�301 T(514) ¼ 83.58
Body: EBA 3.13 � 10�140 T(513) ¼ 35.49
Face 1: FFA 3.30 � 10�50 T(513) ¼ 16.68
Face 2: OFA 0.000677 T(513) ¼ 3.42
Face 3 STS 1.32 � 10�46 T(513) ¼ 15.91
Place 1: PPA 1.87 � 10�209 T(513) ¼ 52.78
Place 2: RSC 1.81 � 10�120 T(513) ¼ 31.17
Place 3: TOS 5.32 � 10�220 T(513) ¼ 55.8
Working memory 3.62 � 10�61 T(513) ¼ 18.96
Language 1 1.79 � 10�177 T(511) ¼ 44.39
Language 2 2.11 � 10�216 T(511) ¼ 54.89
Language 3 1.94 � 10�107 T(511) ¼ 28.46
Language 4 3.01 � 10�97 T(511) ¼ 26.34
Language 5 4.98 � 10�5 T(511) ¼ 4.09
Language 6 2.28 � 10�155 T(511) ¼ 39.02

P values computed from a two-sided paired t test. Body: EBA,
extrastriate body area; face 1: FFA, fusiform face area; face 2: OFA,
occipital face area; face 3: STS, superior temporal sulcus; fROI,
functional region of interest; place 1: PPA, parahippocampal place
area; place 2: RSC, retrosplenial cortex; place 3: TOS, transverse
occipital sulcus; rs, resting state.

PERSONALIZED ATLAS

1074 J Neurophysiol � doi:10.1152/jn.00108.2023 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at Ohio State Univ HSL (003.128.143.042) on December 30, 2023.

http://www.jn.org


definition of selectivity as above for our comparisons, and the
results are summarized in Table 3. For the search spaces, the
selectivity of nearly every fROI improved when using the indi-
vidualized resting state rs-fROIs. The OFA was the only region
where the search space parcel had significantly higher mean
selectivity (mean difference ¼ �0.0164; Bonferroni–Holm
corrected P value ¼ 0.0298). For the visfAtlas, five high-level
visual areas were compared (see MATERIALS AND METHODS for
additional details). Again, all regions except for the OFA

showed higher selectivity in the individualized rs-fROIs.
Here, the difference between the rs-fROIs and probabilistic
parcels (mean ¼ �0.0885) was still significant after correcting
for multiple comparisons indicating the atlas method is pre-
ferred for this region (corrected P value ¼ 6.84 � 10�15).
Parcels from the HAMOTA atlas were compared with the
bilateral hand rs-fROIs, and the selectivity of both rs-fROIs
was significantly higher than the group-level HAMOTA par-
cels. Finally, parcels from the SENSAAS atlas were compared
with the six language rs-fROIs, and we found the rs-fROIs had
significantly higher selectivity than the SENSAAS parcels in
this case as well.

Characterizing Parcellations

The identified rs-fROIs are derived from multiple reso-
lutions of resting state data. Our final analyses explore
how the resting state networks varied from k ¼ 2 to 200
networks. Overall, the group-level parcellations yielded
symmetric networks with high spatial continuity, despite
the high-resolution and high-dimensionality of the con-
nectome. These are features expected from functional net-
works, but importantly, this information appears to be
preserved in the functional data alone without structural
or hemispheric constraints.

Figure 1 shows the two extremes of these group-level
results (k ¼ 2 networks and k ¼ 200 networks) plotted on the
surface. All parcellations are plotted on the lateral surface in
Supplemental Fig. S1, where the number of networks
increases from 2 to 200. We were particularly interested in
areas of the cortex that remained a single network or were of-
ten a transition point between networks, across all of the par-
cellations. To quantify this we computed the number of
parcellations where a given vertex was a boundary (Fig. 5A).
The boundaries of many clusters do not drastically change,
and well-defined sensorimotor and visual clusters are

Table 2. Selectivity of personalized rs-fROIs from 15-min
resting state scans

Putative fROI rs-fROI Selectivity (P Value) T Statistic

Right hand 5.16 � 10�15 T(27) ¼ 15.57
Left hand 2.71 � 10�14 T(27) ¼ 14.54
Right foot 1.01 � 10�13 T(27) ¼ 13.76
Left foot 2.68 � 10�14 T(27) ¼ 14.55
Tongue 1.16 � 10�18 T(27) ¼ 21.78
Body: EBA 3.11 � 10�8 T(27) ¼ 7.65
Face 1: FFA 0.00896 T(27) ¼ 2.82
Face 2: OFA 0.397 T(27) ¼ �0.86
Face 3 STS 0.00265 T(27) ¼ 3.31
Place 1: PPA 2.30 � 10�8 T(27) ¼ 7.78
Place 2: RSC 1.11 � 10�4 T(27) ¼ 4.52
Place 3: TOS 1.50 � 10�10 T(27) ¼ 9.98
Working memory 2.50 � 10�7 T(27) ¼ 6.82
Language 1 1.64 � 10�9 T(26) ¼ 9.05
Language 2 2.90 � 10�14 T(26) ¼ 14.92
Language 3 3.92 � 10�5 T(26) ¼ 4.94
Language 4 2.57 � 10�4 T(26) ¼ 4.23
Language 5 0.975 T(26) ¼ 0.03
Language 6 1.98 � 10�12 T(26) ¼ 12.41

P values computed from a two-sided paired t test. Body: EBA,
extrastriate body area; face 1: FFA, fusiform face area; face 2: OFA,
occipital face area; face 3: STS, superior temporal sulcus; fROI,
functional region of interest; place 1: PPA, parahippocampal place
area; place 2: RSC, retrosplenial cortex; place 3: TOS, transverse
occipital sulcus; rs, resting state.

Table 3. Comparison of personalized rs-fROIs to probabilistic parcels

Search Spaces Atlases

Putative fROI P Value T Statistic P Value T Statistic

Right hand 1.84 � 10�122 T(514) ¼ 31.58 3.28 � 10�156 T(514) ¼ 39.12a

Left hand 3.66 � 10�131 T(514) ¼ 33.46 9.79 � 10�193 T(514) ¼ 48.18a

Right foot 2.15 � 10�130 T(514) ¼ 33.29
Left foot 1.78 � 10�144 T(514) ¼ 36.42
Tongue 1.39 � 10�250 T(514) ¼ 65.16
Body: EBA 1.04 � 10�46 T(513) ¼ 15.93 3.79 � 10�6 T(513) ¼ 4.67b

Face 1: FFA 1.61 � 10�9 T(513) ¼ 6.15 0.000117 T(513) ¼ 3.88b

Face 2: OFA 0.0298 T(513) ¼ �2.18 1.71 � 10�15 T(513) ¼ �8.22b

Face 3 STS 9.75 � 10�24 T(513) ¼ 10.56
Place 1: PPA 3.16 � 10�124 T(513) ¼ 31.98 4.39 � 10�10 T(513) ¼ 6.36b

Place 2: RSC 1.04 � 10�119 T(513) ¼ 31.01
Place 3: TOS 2.00 � 10�74 T(513) ¼ 21.67 5.96 � 10�75 T(513) ¼ 21.78b

Working memory 2.23 � 10�56 T(513) ¼ 17.97
Language 1 1.59 � 10�188 T(511) ¼ 47.22 3.91 � 10�162 T(511) ¼ 40.62c

Language 2 6.90 � 10�71 T(511) ¼ 20.97 2.36 � 10�88 T(511) ¼ 24.52c

Language 3 2.96 � 10�82 T(511) ¼ 23.28 1.66 � 10�135 T(511) ¼ 34.49c

Language 4 2.65 � 10�67 T(511) ¼ 20.23 3.24 � 10�104 T(511) ¼ 27.78c

Language 5 3.43 � 10�69 T(511) ¼ 20.62 4.19 � 10�26 T(511) ¼ 11.18c

Language 6 1.08 � 10�6 T(511) ¼ 4.94 1.83 � 10�207 T(511) ¼ 52.35c

P values computed from a two-sided paired t test. Body: EBA, extrastriate body area; face 1: FFA, fusiform face area; face 2: OFA,
occipital face area; face 3: STS, superior temporal sulcus; fROI, functional region of interest; place 1: PPA, parahippocampal place
area; place 2: RSC, retrosplenial cortex; place 3: TOS, transverse occipital sulcus; rs, resting state. aAtlas parcel from hand motor area
atlas (HAMOTA; 47); batlas parcel from visual functional atlas (visfAtlas; 48); catlas parcel from sentence supramodal areas atlas
(SENSAAS; 9).
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particularly preserved across the parcellations, e.g., rarely if
ever are subdivided into smaller clusters.

Are the rs-fROIs we defined preserved across all possible
total networks? To explore this question, we quantified how
often vertices within a rs-fROI (from Fig. 3) are boundaries.
The mean within a rs-fROI indicates if the region comprises
many transition points, i.e., is often subdivided across the dif-
ferent resolutions. A lower value indicates a module of cortex
that is more stable across resolutions, or not often a border as
the k total networks change. Figure 5B shows the mean num-
ber of times vertices are a boundary, averaging across
domains. Consistent with the whole brain results in Fig. 5A,
the motor rs-fROIs were found to be the most stable, followed
by high-level vision rs-fROIs, then language rs-fROIs, and the
workingmemory rs-fROIs were themost divisible.

DISCUSSION
Here, we demonstrate that individualized networks defined

from only resting state functional connectivity (“rs-fROIs”)
are capable of identifying an individual’s own functional
regions of interest (fROIs) for motion, high-level vision, work-
ing memory, and language comprehension. These rs-fROIs
were defined as the network (across an entire sequence of par-
cellations from 2 to 200 networks) that most closely matched
the task-defined individual fROI (“task-fROI”) in a training
group of 500 individuals. Critically, in an independent test set
of 518 individuals, all rs-fROIs were indeed selective for their
appropriate preferred condition. Nearly all fROIs were signifi-
cantly more selective when defined by the rs-fROIs than
when defined by probabilistic group atlases.

Individualized rs-fROIs showed significant selectivity for
all fROIs. Even when only using a fraction of the available
data, rs-fROIs computed from 15 min of resting state data
were still significantly selective for nearly all fROIs, with the
exception of one language and face region (language 5 and
the OFA). These results establish the potential of using rest-
ing state functional connectivity as a tool for predicting
fROIs, without the need for an additional localizer scan,
complementing previous work using structural connectivity
to predict high-level visual fROIs (50, 51). Moreover, the

selectivity of the rs-fROIs corroborates evidence revealing a
close link between connectivity and brain activity (16–18,
52). Using a single resting state scan, as opposed to multiple
localizer tasks, has the practical advantage of saving time,
research funding, and effort while scanning. Our code will
be publicly available to allow researchers to compute rs-
fROIs from their own resting state data.

The OFA rs-fROI did not show higher selectivity than
probabilistic atlas parcels, potentially because it was defined
by faces – average, instead of the typical faces – objects defi-
nition (23). Alternatively, the specific localizer task may not
have been ideal for capturing all face selective regions,
because 1) there were only two runs, 2) some regions
involved in face processing (including the OFA) elicit higher
responses to faces using dynamic, as opposed to static stim-
uli (53), and 3) because the task was designed within a larger
two-back memory task. Future work will address these
points by using datasets that more precisely map responses
to high-level visual categories, but here we found that using
Julian et al.’s (23) search space, or particularly, the IOG par-
cel from the Rosenke et al. (48) atlas yielded more selective
fROIs than the individualized rs-fROI for the OFA. We were
further limited by the lack of available data to localize the
tool regions (LO and PFS) as there was no scrambled objects
condition, a necessary contrast to identify these regions (23).
Finally, although other task domains are available from the
HCP (41), we did not include thembecause there was very lit-
tle overlap across subjects. Future work could explore
whether resting state rs-fROIs can estimate fROIs in other
domains, e.g., low-level vision or networks involved in
theory ofmind.

We computed and investigated an entire sequence of par-
cellations, but we do not propose the use of any single par-
cellation as the optimal parcellation for all purposes. The
ideal parcellations depend on the researcher’s goal and ques-
tion of interest. For example, if a researcher was interested
in high-level vision, a low-resolution parcellation that con-
tains broad-scale networks would not include smaller com-
ponents of those networks such as the FFA or PPA.
Conversely, for broad-scale organization comparisons (e.g.,
comparing working memory networks on an individual

Figure 5. Number of times vertices are boundaries. A: yellow colors indicate if a vertex is a boundary between networks for all the k network parcella-
tions from k ¼ 2 to 200 (maximum of 199 parcellations). Blue colors indicate areas where vertices are never separated into different networks. B: the
mean number of parcellations where vertices are boundaries was computed within each rs-fROI. The bar plot shows the average across rs-fROIs for
each domain, with the error bars indicating the standard error of the mean. fROI, functional region of interest; rs, resting state.
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level), a lower-resolution parcellation would be preferred.
Likely, multiple parcellations would be appropriate, as even
within a given domain (e.g., language) there was not a single
k network parcellation that best captured every fROI (see
Supplemental Table S1). This is in line with previous work
releasing atlases across a range of resolutions [such as Dadi
et al. (54)] and advocating that there is no single parcellation
that is appropriate for all applications (4, 35, 55).

Due to the ubiquity of individual differences in psychology
and neuroscience, many researchers have proposed methods
to generate individual parcellations based on functional con-
nectivity (6, 10, 36–38, 56–59). Personalized parcellations not
only better represent the underlying connectivity but they also
better predict an individual’s behavior (10, 60). Our approach
differs from existing individual parcellations for two main rea-
sons. First, as described earlier, our approach does not assume
a single parcellation and reports rs-fROIs from parcellations
across an entire sequence of resolutions. We identify potential
parcellations to adopt for each fROI separately based on the
training data’s resting state network and task-fROI overlap.
Because our approach is group-informedwith consistent labels
(e.g., network #1 will be #1 in all subjects), a given fROI can be
approximated for any out-of-sample subject (e.g., to approxi-
mate their OFA, we personalize the k ¼ 106 network parcella-
tion and select the network #21). Second, the underlying
connectivity data used here to define the connectomes is on a
vertex level and does not impose any spatial constraints.
Previous approaches either 1) first reduced the connectome
using PCA (57), 2) averaged seed and/or targets defined by pre-
vious parcellations (37, 38, 56, 58), or 3) downsampled the sur-
face to small ROIs (10, 36). This is advantageous because it
limits the number of experimenter assumptions in preprocess-
ing the data allowing for a fully data-driven approach. Other
approaches were also spatially constrained, e.g., utilized gradi-
ent-based parcellation to find boundaries between spatially
continuous parcels (6, 59), followed a region growing approach
(36), or incorporated a spatial prior to ensure neighboring ver-
tices are more likely to be assigned together (10, 37). Although
these assumptions are reasonable and often useful for defining
functional nodes, our approach is completely data driven and
aims to uncover networks from functional connectivity alone.
Despite the lack of spatial assumptions, we observed that spa-
tially continuous networks still emerge both across the group
and within an individual even when these constraints are
removed.

Furthermore, in the absence of any spatial or down-sam-
pling constraints, many boundaries were stable across reso-
lutions, especially in primary sensory and motor cortices.
These regions are likely the most simple and coarsest natural
processing units. The fact the regions are not broken up fre-
quently suggests modularity and homogenous connectivity
profiles within that area of the cortex. Accordingly, motor rs-
fROIs were the most stable across parcellations compared to
the other domains. High-level visual and language rs-fROIs
showed similar levels of stability but were subdivided in
other resolutions more than the motor rs-fROIs. The working
memory rs-fROI tended to be the most subdivided and com-
prises multiple distributed regions in association cortices.
Additionally, the working memory network functions include
many combinations of distinct and interacting cognitive proc-
esses (61). From the inclusion of multiple regions and broad

function of the working memory network, it follows that this
rs-fROI is less modular in its connectivity profile when com-
pared with, e.g., the right-hand rs-fROI. Future investigations
should explore the distinct functions of subunits within these
broad rs-fROIs.

Although the lack of spatial constraints is advantageous
for allowing a fully data-driven approach, this can also be a
limitation because it does not explicitly model known fea-
tures of the human brain. First, for example, a defining fea-
ture of the brain is homotopy, i.e., the characteristic
symmetry across hemispheres (62, 63). Homotopic atlases
computed from functional connectivity also show reduced
task inhomogeneity compared with nonhomotopic atlases
across a variety of tasks and datasets (64). However, for our
purposes, homotopic atlases would not be able to capture
hemispheric differences in, e.g., the right and left FFA.
Another advantage of a homotopic atlas is that it allows
investigations into lateralization. Lateralization is of particu-
lar interest for researchers interested in, e.g., handedness
and individual differences in hemispheric dominance of the
language network (65). Other group-level atlases that incor-
porate homotopy (64, 66) would be more appropriate for
answering questions about individual differences in laterali-
zation. Second, our parcellation only includes resting state
data and does not incorporate task data in the definition of
the individualized parcellations. Multi-modal approaches,
such as publicly available group-level atlases that include
task and/or structural data in addition to functional connec-
tivity (54, 67), have the advantage of combining the unique
strengths of different neuroimaging modalities. However,
we chose to define atlases without including any task data,
to explore the feasibility of using only resting state data to
define individual specific fROIs across different domains,
potentially circumventing the need for multiple localizer
task scans saving time and resources.

The rs-fROIs and parcellations here were determined based
on a large sample of young adults, and it is unclear if these
results are suitable or would generalize to younger cohorts.
This is mainly because adults and children have characteristi-
cally different patterns of functional connectivity (68, 69).
However, many of these fROIs can be identified very early on.
For example, motor fROIs are present early in life, as a contra-
lateral hand fROI appears as early as infancy (70). High-level
visual fROIs have also been localized in infants (71), and the
organization of occipitotemporal cortex can be explained by
gene expression (72). Other fROIs may require experience, so
they may be unidentifiable in younger age groups. For exam-
ple, the visual word form area requires knowledge of reading.
However, there still appears to be a close relationship between
these fROIs and connectivity, as structural connectivity can
be used to identify the future location of this region (73).
Additionally, even within the same domain (e.g., scene proc-
essing), different fROIs supporting distinct aspects of process-
ing, may develop at varying rates (33). Finally, a multitude of
studies have documented differences in functional connectiv-
ity related to psychological disorders (74). The parcellations
presented here may then also be unsuitable for clinical popu-
lations. Although the networks and centroids presented here
may not be ideal for developing and clinical populations, they
could be used as a starting point and updated based on new
group or individual connectomes. Future work could explore
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the relationship between connectivity patterns and fROIs in
developing and clinical populations.

Conclusions

Using a large sample of young adult data from the Human
Connectome Project, we identify individualized resting state
connectivity rs-fROIs that best capture an individual’s function
regions of interest (fROIs) across domains including motor con-
trol, language comprehension, workingmemory, and high-level
vision. These regions are derived from group-informed data-
driven parcellations for a single individual based on vertex-
to-vertex functional connectivity. Critically, the rs-fROIs show
expected selectivity and outperform probabilistic atlas parcels.
Overall, this provides a potential method for defining individ-
ual fROIs without task data. Finally, we release code to allow
researchers to apply the individualized parcellations and use
their own resting state data to define individualized fROIs.
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