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Osher DE, Brissenden JA, Somers DC. Predicting an individual’s
dorsal attention network activity from functional connectivity finger-
prints. J Neurophysiol 122: 232–240, 2019. First published May 8,
2019; doi:10.1152/jn.00174.2019.—The cortical dorsal attention net-
work (DAN) is a set of parietal and frontal regions that support a wide
variety of attentionally demanding tasks. Whereas attentional deploy-
ment reliably drives DAN activity across subjects, there is a large
degree of variation in the activation pattern in individual subjects. We
hypothesize that a subject’s own idiosyncratic pattern of cortical DAN
activity can be predicted from that subject’s own unique pattern of
functional connectivity. By modeling task activation as a function of
whole brain connectivity patterns, we are able to define the connec-
tivity fingerprints for the frontal and parietal DAN, and use it to
predict a subject’s characteristic DAN activation pattern with high
accuracy. These predictions outperform the standard group-average
benchmark and predict a subject’s own activation pattern above and
beyond predictions from another subject’s connectivity pattern. Thus
an individual’s distinctive connectivity pattern accounts for substan-
tial variance in DAN functional responses. Last, we show that the set
of connections that predict cortical DAN responses, the frontal and
parietal DAN connectivity fingerprints, is predominantly composed of
other coactive regions, including regions outside of the DAN includ-
ing occipital and temporal visual cortices. These connectivity finger-
prints represent defining computational characteristics of the DAN,
delineating which voxels are or are not capable of exerting top-down
attentional bias to other regions of the brain.

NEW & NOTEWORTHY The dorsal attention network (DAN) is a
set of regions in frontoparietal cortex that reliably activate during
attentional tasks. We designed computational models that predict the
degree of an individual’s DAN activation using their resting-state
connectivity pattern alone. This uncovered the connectivity finger-
prints of the DAN, which define it so well that we can predict how a
voxel will respond to an attentional task given only its pattern of
connectivity, with outstanding accuracy.

attention; connectivity fingerprint; functional connectivity; vision

INTRODUCTION

The cortical dorsal attention network (DAN) has been re-
peatedly defined across a multitude of PET and functional MRI
(fMRI) studies spanning over two decades (Brissenden et al.
2016; Corbetta et al. 1993; Corbetta and Shulman 2002; Fox

et al. 2005; Gao and Lin 2012; Hagler and Sereno 2006;
Kastner and Ungerleider 2001; Konen and Kastner 2008;
Mackey et al. 2017; Power et al. 2011; Ptak and Schnider 2011;
Scolari et al. 2015; Sheremata et al. 2010; Silver et al. 2005;
Swisher et al. 2007; Szczepanski et al. 2010; Vossel et al.
2014; Yeo et al. 2011). Typical neuroimaging studies examin-
ing the DAN employ group analyses that reveal a robust set of
regions in frontal and parietal cortices (Corbetta and Shulman
2002; Kastner and Ungerleider 2001; Scolari et al. 2015).
These include the intraparietal sulcus and superior parietal
lobule within the parietal lobe, as well as superior and inferior
precentral sulcus within lateral frontal cortex (Corbetta and
Shulman 2002; Fox et al. 2005; Gao and Lin 2012; Power et al.
2011; Ptak and Schnider 2011; Szczepanski et al. 2010; Yeo et
al. 2011; see also Brissenden et al. 2016). Despite the reliabil-
ity of these group-level regions, individual subjects are none-
theless variable in their specific anatomical pattern of DAN
activity. Furthermore, the DANs of individual subjects have
highly variable connectivity patterns (Braga and Buckner
2017; Gordon et al. 2017; Mueller et al. 2013). This led us to
hypothesize that a subject’s unique pattern of DAN activity
might be explained, and therefore predicted, by that subject’s
pattern of intrinsic functional connectivity (Passingham et al.
2002).

To test how well DAN activation can be predicted by
connectivity, we adopted a technique developed by Osher et al.
(2016), Saygin et al. (2011), and Tavor et al. (2016), which
attempts to identify a functional region’s connectivity finger-
print (Mars et al. 2018; Passingham and Wise 2012), which is
the connectivity pattern that specifically differentiates that
functional brain region from other functional brain regions. An
underlying assumption is that the functional specificity of a
brain region depends largely on the pattern of connections it
makes with other brain regions and therefore patterns of
connectivity can be employed to reveal functional domains in
individual brains.

Connectivity fingerprinting methods for predicting individ-
ual subject task activation have also been successfully imple-
mented for a variety of brain regions and tasks (Cole et al.
2016; Parker Jones et al. 2016; Saygin et al. 2016; Smittenaar
et al. 2017; Tavor et al. 2016; Wang et al. 2017). This technique
attempts to elucidate the defining connectivity pattern (the
connectivity fingerprint) for a brain region for a particular task,
by directly modeling blood oxygen level-dependent (BOLD)
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responses as a function of whole brain connectivity patterns at
the level of an individual data point (here, surface vertices)
within an anatomically restricted search space of each individ-
ual subject. In this study, we examine functional connectivity
between cortical surface vertices within a search space of
interest (i.e., posterior parietal cortex, lateral frontal cortex)
and cortical parcellations outside the search space. Specifically,
the resulting fingerprint model for each search space is a vector
describing the connectivity of the subset of vertices within the
search space that share a common functional response of
interest to all parcels outside the search space. By modeling the
relationship between resting-state correlations and task re-
sponses, we can both 1) isolate the frontal and parietal DAN
connectivity fingerprints, the principal cortical connections
underlying cortical DAN activation, among the complex pat-
tern of connectivity across the brain and 2) use the connectivity
fingerprint to predict DAN activation profiles of subjects from
connectivity alone, as opposed to relying on group-averaging
techniques that can obscure individual subject differences.

We demonstrate that the DAN connectivity fingerprint model
is able to very accurately predict an individual’s pattern of
activation within frontal and parietal cortex. These predictions
are more accurate than a group-average benchmark model and
are selective to a subject’s own connectivity pattern. Finally,
we show that the frontal and parietal cortical DAN connectivity
fingerprints relate strongly to activation in other areas: connec-
tivity to regions that are highly predictive of DAN activity tend
to be highly coactive themselves.

MATERIALS AND METHODS

Subjects. Nine healthy subjects participated in this study (3 women).
All subjects were right-handed and had normal or corrected-to-normal
vision. Subjects ranged in age from 24 to 38 yr. The Institutional
Review Board of Boston University approved the study. All subjects
were compensated, gave written informed consent to participate in the
study, and were screened for MRI contraindications before scanning
commenced. Subjects were recruited from Boston University and the
Greater Boston area.

Visual stimuli and experimental paradigm. Stimuli were gener-
ated using the Psychophysics Toolbox (Brainard 1997; Pelli 1997) in
MATLAB (The MathWorks, Natick, MA) and displayed using an
LCD projector onto a screen inside the scanner bore. Subjects fixated
on a centrally located crosshair while 12 oriented colored bars were
presented (6 in each hemifield). Whereas the number of presented bars
in each hemifield was held constant across trials, the number of items
to be remembered that were presented within a given block was either
0, 1, or 4. The remaining bars in the display served as distractors. The
zero target condition served as a sensorimotor control condition.
Target and distractors were distinguished by color, with targets shown
in red and distractors shown in blue. Target and distractor colors
remained fixed over the experiments so as to not add a cognitive
switching component to the task. Each bar subtended 0.25° � 2.5° of
visual angle. Targets were limited to either the right or left hemifield
(counterbalanced across blocks). All bars in the display were ran-
domly oriented at one of four possible angles (0°, 45°, 90°, 135°).
Each subject completed eight runs (total time per run � 6 min, 16 s).
Each fMRI task run contained ten 34-s task blocks (4 blocks of attend
4 targets, 4 blocks of attend 1 target, and 2 blocks of sensorimotor
control, with 2 block orders that alternated across runs) and 16 s of
blank fixation before and after the task blocks. Each block of trials
consisted of a 2-s cue indicating the location of the target stimuli (left
or right hemifield), followed by eight 4-s trials. On each trial, a
memory sample display was presented for 200 ms. Subjects were
instructed to maintain the orientations of the presented target items

over a 1,000-ms delay period. After the sample and delay period, a
memory probe was presented for 1,800 ms. A 1,000-ms fixation
period separated each trial. On 50% of trials, one of the target bars
changed its orientation from the sample period to the probe period,
whereas on the other 50% of trials, no changed occurred. Subjects
could respond during either the memory probe or the intertrial fixation
period by pressing a key to indicate that the orientation of the target
had changed or a separate key if it had not changed. The magnitude
of the change on change trials was held constant at 90° (e.g., 0°¡90°
or 45°¡135°). During sensorimotor control blocks, subjects were
presented a display consisting entirely of distractors (all blue) and
were instructed to press either key during the probe or intertrial
fixation period. The response button box was operated by the index
and middle fingers of the subject’s right hand. Subjects also under-
went two to three resting-state scans with identical scan parameters
(each 180 TRs; 6-min duration). Resting-state scans were obtained in
either the same scan session (8/9 subjects) or a different session.
During the resting-state scans, subjects were instructed to let their
minds wander while maintaining fixation on a centrally located
crosshair.

Magnetic resonance image acquisition. Data were acquired from
a 3-Tesla Siemens TIM Trio magnetic resonance imager located at the
Center for Brain Science at Harvard University (Cambridge, MA). A
32-channel head coil was used for all scans. A high-resolution (1.0 �
1.0 � 1.3 mm) magnetization-prepared rapid gradient-echo sampling
structure scan was acquired for each subject. The cortical surface of
each hemisphere was then computationally reconstructed from this
anatomical volume using FreeSurfer software (version 5.3.0; https://
surfer.nmr.mgh.harvard.edu/; Dale et al. 1999; Fischl 2012). T2*-
weighted echo-planar imaging (EPI) BOLD images were acquired
using a slice-accelerated EPI sequence that permits simultaneous
multislice acquisitions using the blipped-controlled aliasing in parallel
imaging technique (TR � 2 s, TE � 30 ms, flip angle � 80°, 6/8
partial Fourier acquisition; Setsompop et al. 2012). A total of 69 slices
were acquired with a slice acceleration factor of 3 and 0% skip,
covering the whole brain. Images were acquired at a nominal 2-mm
isotropic spatial resolution (matrix size � 108 � 108 � 69).

fMRI data preprocessing. Functional data were preprocessed using
the FreeSurfer FS-FAST software package. Data were first slice-time
corrected and motion corrected. Following analysis with FS-FAST,
images were surface-registered to “fsaverage” (MNI305) template space.
T-statistic maps from the contrast of attend 4 targets � sensorimotor
control were used for predictions, because the activation pattern from
this contrast is more robust than that produced by the contrasts of
attend 4 � attend 1 and attend 1 � sensorimotor control. Resting-state
data were additionally spatially smoothed (3-mm full-width half-
maximum). Resting-state data were then further preprocessed in
MATLAB using custom scripts. We performed nuisance signal re-
gression of head motion (6 motion parameters and their 6 temporal
derivatives), whole brain signal, and ventricular and white matter
signals (Van Dijk et al. 2010). We then calculated framewise dis-
placement by taking the sum of the absolute derivatives of the six
motion parameters for each time point (Power et al. 2012). A thresh-
old of 0.5 mm was set to identify time points with excessive motion.
To avoid artifact spread during bandpass filtering, high-motion time
points were replaced using linear interpolation (Carp 2013). Bandpass
filtering was then performed (0.01–0.08 Hz). After filtering, high-
motion time points were removed.

Search spaces and target regions, and functional connectivity. Search
spaces and target regions were created from the multimodal parcellation
(MMP) of Glasser et al. (2016) in fsaverage, which is composed of 180
regions in each hemisphere. Frontal and parietal search spaces were
defined by combining all regions that contain the DAN in every subject,
using the contrast of attend 4 targets � sensorimotor control using a
liberal threshold of P � 0.05, to generate a large enough search space that
would include each subject’s DAN with high certainty. The frontal search
space contained the following regions from the MMP, for both hemi-
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spheres: 6a, 6ma, 6d, 6v, 6r, i6–8, 8Av, 8C, 55b, FEF, PEF, IFJp, IFJa,
and IFSp. The parietal search space contained the following regions from
the MMP, for both hemispheres: V7, IP0, IP1, IPS1, IP2, AIP, LIPd,
LIPv, VIP, MIP, 7PL, 7PC, 7AL, and PFt.

Functional connectivity was calculated as the Pearson correlation
coefficient between the resting-state time course of each vertex of a
search space and the mean resting-state time course across all vertices of
each target parcel. Target regions were defined as all other MMP regions
not included in the search space. This analysis yielded a v � p matrix of
correlations (a functional connectome) for each subject hemisphere, for
both the frontal and parietal models, where v is the number of vertices in
the search space and p is the number of target parcels.

DAN predictions. Connectivity fingerprint (CF) models were con-
structed using a leave-one-subject-out approach to permit cross-valida-
tion using the subject’s actual task data. Therefore, nine CF models,
each leaving out a different subject, were constructed for each hemi-
spheric search space (parietal, frontal). A CF model was a vector of
length p, the number of target parcels. CF model predictions of a
subject’s task activation within the model search space were a vector
of length v, the number of vertices in the search space. Predictions
were generated by computing the dot product between the individual’s
functional connectome (i.e., vertex-to-parcel connectivity matrix) and
the CF model coefficients, which was constructed without any data
from that subject.

CF models were constructed from functional connectivity and task
data using ridge regression (Hastie et al. 2009), also known as
Tikhonov regularization. The ridge regression model was built using
standardized data (mean centered and SD set to 1) with connectivity
values as the design matrix and t-statistic values (attend � sensori-
motor control) as responses; individual data points were single verti-
ces in the frontal or parietal search space, concatenated across sub-
jects. The model was trained using a nested leave-one-subject-out
routine, which is an iterative approach wherein all of the data of the
subject whose DAN is to be predicted is kept aside and not used for
modeling whatsoever; this is the “outer loop” of cross-validation.
With the remaining data, nested “inner loops” of similar cross vali-
dation are then iteratively performed, to predict the DAN of each
remaining subject. Each inner loop is performed 100 times, each time
using a different regularization coefficient (the lambda parameter)
from a set of values logarithmically spaced between 10�5 and 102.
The optimal lambda was chosen from the set of inner loop models that
minimized the average mean squared prediction errors across subjects

(argmin
1

n
�MSEk for k lambdas in n subjects). The mean model

coefficients across inner loops for the selected lambda were then com-
puted, and the resulting vector was multiplied by the connectivity matrix
of the outer loop left-out subject, to produce the final predicted DAN
responses for that subject. Thus the model and parameter selection is
completely independent of the left-out subject. To reiterate this procedure
from the bottom up, in each inner loop, connectivity and BOLD re-
sponses from all vertices of a search space of all N � 2 subjects are
modeled by ridge regression with 100 different regularization parameters;
the coefficients from the best-fitting model are retained, and these coef-
ficients from each inner loop are then averaged across all N � 2 subjects
and then applied to the outer, left-out subject’s connectivity data, to
generate predictions for that subject. This procedure is then repeated for
all subjects. The model coefficients for the connectivity fingerprints (i.e.,
see Fig. 4A) were produced in exactly the same way, except that a single
loop of hyperparameter-optimizing cross-validations was used, to gener-
ate a single model. Prediction accuracy was assessed as the correlation
between the predicted and observed values for an individual subject
(Tavor et al. 2016).

Group-average benchmark. The group-average benchmark was pro-
duced using a leave-one-subject-out procedure. For each left-out
subject, a random effects general linear model was fit (using Free-
Surfer) to the contrast estimates of all other subjects. This was

performed on the fsaverage template surface. Thus the group-average
benchmark was slightly different for each subject, because their own
data were excluded from the analysis. Prediction accuracy was as-
sessed as described above, using the correlation between the predicted
values from the group average and the observed values for each
subject.

Predictions from other subjects’ connectivity. We compared the
accuracy of predictions generated from a subject’s own connectivity
pattern with predictions generated from other subjects’ connectivity.
After training the CF model for each left-out subject and for each
search space, we applied the model to the connectivity pattern of each
other subject (by multiplying the vector of model coefficients with the
connectivity matrix for each subject), resulting in nine predicted
activity patterns for each subject (1 for themselves, using the model
built by leaving them out, and 8 built from the models that left out
each other subject). These were then compared with the left-out
subject’s actual activation pattern. We then tested the difference
between prediction accuracy from subjects’ own connectivity against
predictions from other subjects’ connectivity, using two-sample
t-tests.

RESULTS

We aimed to elucidate the connectivity fingerprint of the
parietal and frontal portions of the DAN using intrinsic func-
tional connectivity and task-based BOLD activity. We designed
computational models to learn the relationship between con-
nectivity and task-based DAN activity; the resulting models,
i.e., the DAN connectivity fingerprints, were then applied to
independent subjects’ connectivity data to predict those sub-
jects’ unique task activation. We evaluated the predictions by
comparing them to the actual DAN activity pattern for each
individual.

To elicit DAN activation, we employed a change detection
visual working memory task (Fig. 1A), which has been shown
to robustly recruit putative DAN frontoparietal areas (Huettel
et al. 2001; Sheremata et al. 2010; Todd and Marois 2004;
Xu and Chun 2006). Frontal and parietal search spaces were
defined from the multimodal parcellation of Glasser et al.
(2016), by combining all parcels that unequivocally contained
the DAN in all subjects (Fig. 1B; see MATERIALS AND METHODS).
All other regions from this parcellation were used as targets
(346 targets for the frontal search space and 346 for the parietal
search spaces). For each subject hemisphere, we aimed to
predict the pattern of task activation for each vertex within
each search space. To construct our models, we extracted, for
each vertex within each search space, the degree of activation
during the task (attend � sensorimotor control), as well as its
resting-state correlation with each target region. We modeled
task activation as a function of the whole brain pattern of
connectivity using ridge regression under a nested leave-one-
subject-out cross-validation routine (Fig. 1C; see MATERIALS

AND METHODS).
Predictions for frontal DAN. The resulting predictions were

remarkably accurate: the mean Pearson’s correlation between
subjects’ actual responses and predicted responses was 0.65 �
0.052 for the left hemisphere (LH) frontal DAN and 0.67 �
0.077 for the right hemisphere (RH). These predictions were so
accurate that we felt it appropriate to showcase the results of
every subject (Fig. 2). Note that the unique pattern of each
subject’s DAN activation was faithfully captured by connec-
tivity-based predictions. For example, the right hemisphere of
subject 1 has four frontal loci that are strongly activated, and
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the subject’s whole brain connectivity pattern accurately pre-
dicts each of these loci. As a benchmark comparison, we also
generated group-average maps, using a leave-one-subject-out
approach (see MATERIALS AND METHODS). Building a functional
atlas based on group averaging of task data is a standard
technique for identifying functional areas in individual sub-
jects. In the present study, this approach is fairly accurate
across subjects (mean LH correlation with actual was 0.46 �
0.033; mean RH correlation was 0.39 � 0.059). The group
average captures what is common across subjects spatially, but
fails at finding unique features of individual subjects’ activa-
tion patterns; by contrast, the connectivity model captures what
is common across subjects’ connectivity fingerprint for DAN
activation, which in turn more accurately matches their indi-
vidual functional response profiles. The connectivity-based pre-
dictions significantly outperformed the group-average bench-
mark in both hemispheres [LH: P � 5.8 � 10�4, t(8) � 5.5;
RH: P � 2.1 � 10�4, t(8) � 6.4].

Predictions for parietal DAN. The parietal search space
yielded even greater accuracy than the frontal search space: the
mean correlation between subjects’ actual responses and pre-
dicted responses was 0.73 � 0.053 in the LH and 0.73 � 0.069
in the RH (Fig. 2). The group average also yielded very good
predictions in the parietal search space. For the LH, the mean
correlation was 0.45 � 0.036, and for the RH, the mean cor-
relation was 0.54 � 0.037. However, the connectivity-based
predictions significantly outperformed the group-average
benchmark once again [LH: P � 3.8 � 10�4, t(8) � 5.8; RH:
P � 3.0 � 10�3, t(8) � 4.2].

Specificity of a subject’s own connectivity pattern and
DAN response. Next, we assessed how strongly a subject’s
own connectivity pattern relates to his or her specific DAN
response profile (see MATERIALS AND METHODS). We compared
each subject’s DAN responses with predictions built from each
other subject’s connectivity patterns to ask, “Does a subject’s
unique connectivity pattern predict their own, idiosyncratic
DAN, above and beyond the connectivity of a different sub-
ject?” We found this to be significantly true in all subjects in
both frontal and parietal search spaces, and in both hemi-
spheres, with only one exception (Fig. 3, Table 1). Across the
group, in the frontal search space, subjects’ own connectivity
patterns significantly predict their DAN responses better than
other subjects’ connectivity in both hemispheres (LH: mean
within subjects � 0.65 � 0.052, mean other subjects � 0.29 �
0.015; RH: mean within subjects � 0.67 � 0.077, mean other
subjects � 0.27 � 0.019, P � 0.0001). The same was true for
the parietal search space (LH: mean within subjects � 0.73 �
0.053, mean other subjects � 0.36 � 0.018; RH: mean within
subjects � 0.73 � 0.069; mean other subjects � 0.43 � 0.018,
P � 0.0001). Thus individual differences in DAN activation
are explained best by an individual’s own connectivity, rather
than the general connectivity pattern of a region.

Connectivity fingerprints. The model coefficients (Fig. 4)
describe the connectivity pattern that is best associated with
DAN activation, representing its connectivity fingerprints. In
other words, if a vertex is strongly connected to the positive
predictors (e.g., anterior insula) and weakly connected to negative
predictors (e.g., temporal parietal junction), then it is likely that

Fig. 1. Task and methods schematic. A: blood oxygen
level-dependent (BOLD) data were acquired while sub-
jects performed a change detection task. Participants
were instructed to attend to the orientation of the red
target items and to ignore irrelevant distractors (blue).
After a short delay, participants indicated whether any
of the attended items had changed orientation from the
sample to the probe display. B: the multimodal parcel-
lation from Glasser et al. (2016) was used to define
targets and search spaces. The frontal and parietal
search spaces are outlined in white. All parcels not part
of a search space were included as targets. C: dorsal
attention network activation and functional connectivity
were modeled with a nested leave-one-subject-out cross
validation routine, using ridge regression. All vertices
were iteratively held out for a single subject, and the
lambda hyperparameter (�; regularization coefficient)
of the ridge was optimized within an additional loop of
cross-validation across the remaining subjects. The co-
efficients from the optimal inner-loop models were
averaged and then used to generate predictions for the
outer-loop subject using only that subject’s connectivity
pattern. Sub, subject.
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this vertex is part of the DAN. Interestingly, there is a striking
relationship between the DAN connectivity fingerprints and the
whole brain activation pattern to an attentionally demanding
task. The Pearson correlation between the parcelwise mean
responses and the frontal DAN coefficients was r � 0.62 in the
LH and r � 0.64 in the RH. For the parietal DAN, this
relationship was also significant in both hemispheres: r � 0.71
in the LH and r � 0.64 in the RH (all P � 0.0001). Thus the
more responsive a parcel is, the more predictive its connectiv-
ity pattern. It is important to note that the modeling procedure
does not include any information about the responses of con-
nected regions and in no way ensures that responsive re-
gions would be especially predictive. Nonetheless, the con-
nectivity fingerprints for the frontal and parietal DAN ex-
hibit a robust pattern wherein the regions that are recruited
by an attentionally demanding task are also highly predic-
tive of DAN responses. This includes the intraparietal sulcus
and superior parietal lobule for the frontal DAN, and supe-
rior and inferior regions in the precentral sulcus for the
parietal DAN. Both search spaces are predicted by low- and
high-level visual areas in occipital and temporal cortices, as
well as regions in the cognitive control network, including
anterior insular cortex and anterior cingulate cortex (for the
frontal DAN only). Regions with negative model coeffi-
cients are less connected to more responsive DAN vertices

and include the temporal parietal junction, posterior cingu-
late cortex, and ventral medial prefrontal cortex (especially
for the parietal DAN). Interestingly, the frontal and parietal
search spaces diverged in their connectivity fingerprints in
the anterior cingulate and ventral medial prefrontal cortex,
which were negative for the parietal search space and
positive for the frontal search space.

DISCUSSION

We show here that connectivity fingerprint modeling of
cortical DAN activity produces highly accurate predictions at
the smallest measurable unit of data, single cortical surface
vertices, across individual subjects. These findings demonstrate
how strongly connectivity can characterize activity in the
frontal and parietal portions of the DAN and how an individual
subject’s spatial variability of DAN activation aligns precisely
with a multivariate map of whole brain connectivity. More-
over, we show that connectivity-based predictions are more
accurate than independent group-average predictions, which
are a standard method for predicting an individual’s func-
tional response map from other subjects’ data. A group-
average map represents what is consistent across subjects
spatially, rather than what is unique about an individual
subject’s DAN. Whole brain connectivity, on the other
hand, can shift spatially from subject to subject and is

Fig. 2. Predicted dorsal attention network (DAN) activation for each subject. Predictions for all 9 subjects are shown, juxtaposed with their actual observed
responses, for both frontal and parietal search spaces. Color scale is in Z scores. Note the variation in DAN activation profiles across individual subjects, which
is accurately accounted for by the connectivity-based predictions. fcMRI, functional connectivity magnetic resonance imaging.
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unconstrained by location information alone; our results
show that the spatially impartial connectivity data is supe-
rior at predicting task activity within the DAN compared
with the spatial information alone of the group average.

The present findings add to a growing body of work
demonstrating the efficacy of connectivity fingerprinting
methods for predicting individual subject task activation.
Connectivity fingerprinting was initially developed using
structural connectivity data (Osher et al. 2016; Saygin et al.
2011, 2016; Smittenaar et al. 2017; Wang et al. 2017) and
has been expanded to employ functional connectivity (Parker
Jones et al. 2016; Tavor et al. 2016) as employed in the present
study. Prior work successfully implemented CF models for a
variety of brain regions and tasks, including the Human Con-
nectome Project data set (Tavor et al. 2016), reward signals in
striatum (Smittenaar et al. 2017), language maps in presurgical
patients (Parker Jones et al. 2016), selectivity in blind and
sighted parahippocampal gyrus (Wang et al. 2017), develop-
ment of the visual wordform area (Saygin et al. 2016), and
extended as “activity flow” by weighting connectivity patterns
with regional functional responses (Cole et al. 2016). In the
present study, this approach successfully predicts frontal and
parietal lobe activation during an attentionally demanding
visual working memory task. These results also advance the
possibility that there exist strong connectivity fingerprints for
other aspects of visual cognition. Unlike analysis approaches
that parcel the brain solely on the basis of resting-state data
(e.g., independent components analysis), the connectivity fin-
gerprinting approach constructs a model that directly predicts
task-specific activation. It would be very interesting to examine
differences within the DAN for different types of attention
tasks, including working memory load manipulations, and
assess how the connectivity fingerprints differ across varying

Fig. 3. Prediction accuracy depends on subjects’ unique connectivity pattern. For each subject and for each region of interest, predictions were generated from
a subject’s own connectivity (red) or from each other subject’s connectivity (blue). In all but one case, a subject’s unique pattern of dorsal attention network
responses is best predicted from his or her own connectivity (right hemisphere parietal region of subject 2).

Table 1. Prediction accuracy from a subject’s own connectivity
vs. predictions from other subjects’ connectivity

Left Hemisphere Right Hemisphere

Corrected P
value t(7) statistic

Corrected P
value t(7) statistic

Frontal subject
1 4.20�10�5 9.87 1.71�10�5 11.30
2 2.03�10�4 7.18 2.07�10�3 4.86
3 5.62�10�5 9.18 1.25�10�6 21.02
4 1.18�10�3 5.25 1.14�10�5 12.42
5 5.98�10�6 14.25 1.87�10�6 17.93
6 6.00�10�5 8.88 4.42�10�5 9.53
7 2.18�10�7 27.04 1.54�10�4 7.67
8 1.98�10�5 11.43 4.31�10�3 4.15
9 5.98�10�6 14.31 5.41�10�6 14.46

Parietal subject
1 1.07�10�4 8.12 2.17�10�5 11.71
2 3.64�10�3 4.28 9.68�10�2 1.92
3 2.21�10�6 19.35 5.36�10�7 23.75
4 1.07�10�4 8.24 3.25�10�2 2.74
5 7.20�10�5 9.40 5.75�10�5 9.25
6 1.21�10�5 12.85 8.34�10�6 14.40
7 2.73�10�6 16.96 2.17�10�5 11.28
8 1.07�10�4 8.27 5.75�10�5 9.15
9 2.42�10�4 6.98 4.77�10�3 4.27

P values are corrected using the Benjamini-Hochberg method.
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tasks and parameters, as well as how well each task predicts
each other. Future studies could also use this technique to study
the ventral attention network, which is recruited during sensory
reorienting (Corbetta and Shulman 2002). The cognitive con-
trol network includes several regions that tend to be coactive
with the DAN during attentionally demanding tasks (Cole et al.
2014; Cole and Schneider 2007), and in the present study were
observed to contribute heavily to the connectivity fingerprint of
the DAN. It would be enlightening to also investigate the
connectivity fingerprint of the cognitive control network during
tasks that selectively recruit it. The cerebellum has been
increasingly noted for its involvement in guiding visual atten-
tion (Brissenden et al. 2016, 2018) and could be another
interesting target for a connectivity fingerprinting analysis.

In the present study, the ability of DAN connectivity finger-
prints to distinguish a subject’s nuanced pattern of activation is

best demonstrated by the observation that a subject’s unique
DAN activation pattern is best predicted by his or her own
connectivity profile. The dramatic drop in accuracy when the
connectivity of one subject is used to predict another’s DAN
implies that there exists a defining relationship between the
functional responses and connectivity of an individual. To-
gether with the group-average results, this suggests that spatial
anatomical information obtained from group data does not
account for an individual’s DAN response pattern nearly as
well as his or her own, unique pattern of connectivity, and that
across subjects, whole brain connectivity patterns covary spa-
tially with DAN responses.

In this study, robust predictions were obtained using large
parietal and frontal search spaces. Each of those regions is
known to contain multiple functional cortical areas, which may
differ in their pattern of functional connectivity (e.g., Badre et

Fig. 4. Connectivity fingerprints for the dorsal attention network (DAN). A: the connectivity fingerprints for frontal and parietal DANs are shown at left
and right, respectively, with the lateral view at top and medial view at bottom. Because the connectivity fingerprints of both hemispheres were extremely
similar, they are averaged for visualization purposes. Hot colors depict regions whose connectivity predicts higher DAN activation, whereas cool colors
depict regions whose connectivity predicts lower DAN activation. The empty regions on the lateral surfaces are the frontal and parietal search spaces
where DAN activation was predicted (within-search spaces were excluded as targets). Color scale for these model coefficients is in arbitrary units. B:
unthresholded group-average map with regional boundaries overlaid in black and search spaces in white. Color scale is in Z scores, as in Fig. 2. C: the
DAN connectivity fingerprints strongly correlate with blood oxygen level-dependent (BOLD) responses. The model coefficients and mean BOLD
responses of each parcel outside of the search spaces are plotted for the frontal (left) and parietal (right) DANs. Thick red lines denote best linear fit, and
thin lines are 95% confidence intervals. Note that the responses of these regions are completely independent of the model itself, but nonetheless, the most
responsive regions are the best predictors.
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al. 2009; Hagler and Sereno 2006; Konen and Kastner 2008;
Mackey et al. 2017; Michalka et al. 2015; Silver et al. 2005;
Swisher et al. 2007). This suggests that the use of more
restrictive search spaces could yield even more accurate pre-
dictions; nonetheless, the models find connectivity patterns that
are common among voxels that respond similarly throughout
the entire search space (even if they are spatially disparate).

Analysis of the resulting DAN connectivity fingerprint re-
veals a strong relationship to activation in other areas outside
of the cortical DAN. Regions whose connectivity is highly
predictive of DAN activity tend to be highly coactive them-
selves. This result makes sense but is remarkable because the
only task-evoked data that were included in the model origi-
nated from the frontal or parietal search spaces; no information
about the responses of other regions was included, and thus this
phenomenon is not an artifactual product of the modeling
procedure. Indeed, any other result could have been observed
with equal likelihood, including the opposite, where the least
responsive regions were predictive of DAN responses, or no
relationship at all. Nonetheless, the connectivity fingerprint for
the cortical DAN attentional response is primarily composed of
strongly responsive regions; regions outside of the DAN that
respond to an attention task are especially connected to the
most responsive vertices within the DAN. Similar results were
reported with face selectivity in the fusiform gyrus, whose
connectivity fingerprint was composed of other components of
the face network (Saygin et al. 2011), and across the brain for
multiple visual categories, where the most selective regions
were reported to constitute major hub nodes of brainwide
connectivity fingerprints (Osher et al. 2016). Additionally, the
regions where higher connectivity predicts lower DAN re-
sponses include many components of the default mode network
(Greicius et al. 2003; Power et al. 2010, 2011; Raichle et al.
2001). This supports a corpus of literature that report robust
anticorrelations between these networks (Fox et al. 2005, 2009;
Power et al. 2011); the connectivity fingerprinting approach
differs from this literature by directly modeling connectivity
with neural responses, at the fine spatial grain of single voxels
in individual subjects, and thus it delineates the connections
that covary with the degree of DAN activation [as opposed to
a region of interest (ROI)-based approach that treats each voxel
equally within an ROI].

Finally, these findings offer several practical implications
for research in cognitive and clinical neuroscience. First, the
DAN is a burgeoning research interest, currently yielding
hundreds of hits on PubMed. It is therefore of great interest to
a large research community that we can now predict cortical
DAN at the level of an individual subject with remarkably high
accuracy. In the present experiment, subjects underwent over
50 min of task MRI, but between 12 and 18 min of resting-state
MRI. Given that the cost of an hour of MRI scan time can often
exceed $500, the potential to reduce scan time per subject and
thus the scanning budget offers another possible benefit for a
cognitive neuroscience laboratory. Furthermore, mounting ev-
idence from several independent laboratories has shown that
connectivity fingerprints can predict a variety of neural re-
sponse patterns, including visual perception, visual and audi-
tory attention, working memory, motor action, social cogni-
tion, reward, and language (Osher et al. 2016; Parker Jones et
al. 2016; Saygin et al. 2011; Smittenaar et al. 2017; Tavor et al.
2016; Tobyne et al. 2018). A second implication for these

findings is that they enable otherwise inaccessible research into
the DAN of subject pools that cannot perform fMRI experi-
ments, such as those with low-functioning autism (Pardini et al.
2009). Third, these findings could be used for presurgical
planning (see Parker Jones et al. 2016); surgeons can now use
a cheaper and faster resting-state scan to identify with high
confidence the location of the DAN, to avoid brain damage that
might result in spatial neglect syndrome, even if the patient is
currently unresponsive. Finally, predicting the DAN from a
short resting-state scan will be powerful for exploring its
development from very young ages (e.g., Saygin et al. 2016).
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