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A B S T R A C T

The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Iden-
tification of the precise anatomical location of an individual's unique set of functional regions is a challenge for
neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four
interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention
networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject
anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we
demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can
accurately identify their specific pattern of visual- and auditory-selective working memory and attention task
activation in lateral frontal cortex (LFC) using “connectome fingerprinting.” Building on prior techniques (Saygin
et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al.,
2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average
predictions and match the accuracy of within-subject task-based functional localization, while requiring less
data. These findings are robust across brain parcellations and are improved with penalized regression methods.
Because resting-state data can be easily and rapidly collected, these results have broad implications for both
clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations
for future research.
1. Introduction

A central challenge for cognitive neuroscience is to determine the
functional organization of human frontal cortex (e.g., Petrides, 1995).
Task-based fMRI approaches and other techniques have yielded consid-
erable insights (e.g., Koechlin et al., 2003; Astafiev et al., 2003; Badre,
2008; Fedorenko et al., 2013; Sallet et al., 2013; Nee& D'Esposito, 2016),
but many issues remain unresolved. Recent work has demonstrated that
an individual's unique pattern of functional or structural brain connec-
tivity offers an alternative means to localize functional organization in
individuals (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016;
Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017).
Findings from our laboratory (Michalka et al., 2015; Tobyne et al., 2017)
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revealed multiple visual-selective and auditory-selective lateral frontal
cortical areas that are nodes of separate whole-brain sensory
modality-selective resting-state networks (Fig. 1C). Here, we examine the
utility of functional connectivity patterns in predicting the precise
functional organization of sensory-selective regions within frontal cortex.

Although sensory processing is typically considered to be restricted to
posterior portions of the cerebral cortex, recent MRI studies demonstrate
that specific influences of the visual and auditory sensory modalities
extend to multiple regions of lateral frontal cortex (LFC) in humans
(Michalka et al., 2015; Braga et al., 2017b; Mayer et al., 2017; Noyce
et al., 2017; Tobyne et al., 2017). This focus on sensory modality selec-
tivity complements a broad range of other approaches to understanding
the functional organization of human LFC.
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Fig. 1. Sensory modality-selective attention regions in lateral frontal cortex, as described in Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017. (A) Three
representative subjects from Michalka et al. (2015). Within LFC, two visual-selective regions, sPCS and iPCS, are interleaved with two auditory-selective regions, tgPCS
and cIFS, bilaterally. The four regions (attend vision (cool colors) vs. attend audition (hot colors)) were observed bilaterally in 90% of individual subjects. (B) Group
averaging of auditory vs. visual attention results from Michalka et al. (2015) obscured these regions, due to inter-subject anatomical variation. Group level (N¼ 9)
analysis revealed only a single modality-selective LFC region in each hemisphere (tgPCS in left hemisphere; sPCS in right hemisphere). Only at the individual subject
level were all four regions regularly identified (visualized here at p< 0.05, uncorrected). (C) Analysis of resting-state data reveals that the LFC regions form
modality-specific functional networks with posterior visual (IPS/TOS) and posterior auditory (STG/S) attention regions. sPCS¼ superior precentral sulcus;
tgPCS¼ transverse gyrus intersecting the precentral sulcus, iPCS¼ inferior precentral sulcus; cIFS¼ caudal inferior frontal sulcus, IPS/TPS¼ intraparietal sulcus/-
transverse occipital sulcus, STG/S < superior temporal gyrus/sulcus.
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Multiple sensory-selective regions in LFC were observed by Michalka
et al. (2015) by contrasting sustained attention to visual or auditory
stimuli. This anslysis revealed two visual-selective regions (superior and
inferior precentral sulcus; sPCS and iPCS) interleaved with two
auditory-selective regions (transverse gyrus intersecting the precentral
sulcus and caudal inferior frontal sulcus; tgPCS and cIFS), in each
hemisphere of LFC (Fig. 1A). Noyce et al. (2017) replicated these findings
using a visual/auditory working memory (VAWM) paradigm. Accurate
identification of these small, neighboring regions critically relies on in-
dividual subject analysis; while group-averaging methods obscure these
regions (Fig. 1B), all 8 regions were identified in 90% of individual
subjects in both studies (Michalka et al., 2015; Noyce et al., 2017).

Efforts to parcellate human frontal lobe are constrained by the fact
that distinct regions are small and their precise location varies across
individuals. Functional MRI-based (fMRI) methods also face the chal-
lenge that frontal lobe activation requires performance of highly
demanding cognitive tasks and acquisition of large amounts of functional
data per subject, due to low signal amplitude. The approach of collecting
exceedingly large amounts of data on individual subjects has proven
successful in several recent fMRI investigations (Laumann et al., 2015;
Braga and Buckner, 2017a; Gordon et al., 2017). Despite the power and
promise of these and other individual subject analyses (e.g. Michalka
et al., 2015; Noyce et al., 2017), ‘deep sampling’ methods are cost pro-
hibitive and their applicability appears limited to highly sophisticated
subject pools, due to their significant cognitive and/or time demands.
These approaches would be difficult or impossible to employ in clinical
populations.

Here, we combine an individual subject approach with a penalized
regression-based ‘connectome fingerprinting’ (CF) technique to predict
the complex pattern of modality-selective attention areas in LFC. The use
of connectivity-based techniques for predicting the functional architec-
ture of the brain is in its infancy; therefore, we also examine the influence
of algorithms, cortical parcellation methods, and data quality consider-
ations on prediction accuracy. We show that CF predictions are capable
of localizing an individual's own unique pattern of auditory- and visual-
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selective functional recruitment using only their functional connectivity.
We also present a series of recommendations for optimizing CF predic-
tion techniques that should serve as a blueprint for future research. These
methods require only a modest amount of resting-state functional MRI
data and a modest subject pool size (N¼ 9 in Michalka et al., 2015,
N¼ 14 in Noyce et al., 2017), and thus offer a widely applicable way to
examine frontal lobe function in individual subjects.

2. Materials and methods

2.1. Subject datasets

Two separate datasets from our laboratory were used for this work: 1)
visual/auditory sustained attention (VASA) task fMRI (t-fMRI), resting-
state fMRI (rs-fMRI) and high resolution structural MRI data from 9
subjects (mean age 27.66� 2.7, range 22–31, 5 females) previously
published in Michalka et al. (2015), hereafter referred to as VASA9, and
2) visual/auditory working memory (VAWM) t-fMRI, rs-fMRI and
anatomical data from 14 subjects (mean age 30� 2.8, range 25–35, 6
females) and previously published in Noyce et al. (2017); hereafter
referred to as VAWM14. All subjects were healthy, right-handed, native
English speakers and were recruited from the Boston University com-
munity. The Institutional Review Board of Boston University approved all
experimental procedures. All subjects provided written informed consent
in accordance with the guidelines set by Boston University.

Both the VASA9 and VAWM14 datasets were used in a series of
connectome fingerprinting (CF) analyses investigating the capability of
the technique to predict an individual's unique pattern of task-driven
functional recruitment within LFC. Several additional analyses were
conducted with the VASA9 dataset to investigate optimal modelling
procedures for such small, interleaved and variably located cortical re-
gions. Seven subjects from the VASA9 dataset also participated in the
VAWM14 dataset. Noyce et al. (2017) previously compared the VAWM
task as a localizer for the VASA task and found that the contrast of
auditory vs. visual working memory demands in the VAWM task recruits
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the same frontal regions as the contrast of sustained attention to auditory
vs. visual stimuli in the VASA task. As an established localizer for
modality-selective LFC, the VAWM14 dataset was used as a
within-subject standard against which to compare CF predictions. A
second set of analyses using the VAWM14 dataset validated the ability of
CF to predict sensory modality-selective functional recruitment in LFC
and also investigated how the amount of rs-fMRI data affected the ac-
curacy of CF-based predictions.

2.2. MRI acquisition

Both the VASA9 and VAWM14 datasets were acquired at the Center
for Brain Science Neuroimaging Facility at Harvard University using a 3-
T Siemens Tim Trio MRI scanner (Siemens AG, Erlangen, Germany)
equipped with a 32-channel phased array head coil.

VASA9 Dataset. t-fMRI and rs-fMRI were acquired with a gradient
echo echo-planar imaging (GE-EPI) sequence sensitive to blood oxygen
level dependent contrast (repetition time (TR)/echo time (TE)¼ 2600/
30ms, flip angle (FA)¼ 90�, 42 axial slices, 3mm slice thickness, in-
plane resolution 3.125� 3.125mm). rs-fMRI acquisitions were 139 or
256 TRs long. During rs-fMRI acquisitions, subjects were instructed to
keep their eyes open, maintain fixation on a centrally presented cross,
allow their minds to wander and avoid mental activities such as counting.
High-resolution (1.0� 1.0� 1.3mm) T1-weighted (T1w)magnetization-
prepared rapid gradient echo (MPRAGE; Mugler and Brookeman, 1991)
structural images were acquired for cortical surface reconstruction with
FreeSurfer (version 5.3; RRID: SCR_001847; Dale et al., 1999; Fischl
et al., 1999; Fischl, 2012). An experienced researcher manually corrected
the cortical surface reconstructions for errors in tissue segmentation and
surface generation.

VAWM14 Dataset. t-fMRI, rs-fMRI and anatomical acquisitions were
carried out in a similar manner to the VASA9 dataset. Eight GE-EPI t-fMRI
acquisitions (TR/TE¼ 2000/30ms, FA¼ 80�, 69 axial slices, 6/8 partial
Fourier, 2.0 mm isotropic voxels) were acquired. A simultaneous multi-
slice (SMS; Feinberg and Setsompop, 2013) acceleration factor of 3
was applied using the blipped-CAIPI technique (Setsompop et al., 2012).
Three runs of rs-fMRI data were acquired for 13 of 14 subjects with the
same GE-EPI protocol and consisted of 180 TRs (6min) each. Only two
runs of the same sequence were acquired on the final subject. During
rs-fMRI acquisitions VAWM14 subjects were instructed exactly as in the
VASA9 rs-fMRI acquisitions. High resolution (1mm isotropic) T1w
MPRAGE structural images were acquired for surface reconstruction with
FreeSurfer using the exact procedures as with the VASA9 dataset. For
subjects who participated in both VASA and VAWM studies, a single set
of structural images were collected and the resulting cortical surface
reconstructions were used in the analysis of both functional data sets.

2.3. Experimental design

Stimulus display and task timing control for the VASA and VAWM
tasks was performed using MATLAB (The MathWorks, Natick, MA) and
PsychToolbox (RRID: SCR_002881; Brainard, 1997; Kleiner et al., 2007).
Preprocessing and analysis of both task datasets was carried out in in-
dividual native surface space using FreeSurfer's FS-FAST toolset (https://
surfer.nmr.mgh.harvard.edu/fswiki/FsFast). Each t-fMRI run was cor-
rected for head movement, slice-time corrected, intensity normalized,
registered to native anatomical space with boundary-based registration
(Greve and Fischl, 2009), resampled onto the subject's individual
reconstructed cortical surfaces using trilinear interpolation and spatially
smoothed with a 3mm full-width half-maximum (FWHM) 2D Gaussian
kernel along the cortical surface. Slice-time correction for the VAWM
t-fMRI data accounted for the applied SMS factor of 3. Acquisition time
series were analyzed vertex-wise with a general linear model (GLM) by
fitting each vertex with regressors that matched the task conditions and
orthogonalized confound regressors derived from a singular value
deconstruction of the 12 motion parameters calculated during motion
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correction. A canonical hemodynamic response function modeled by a
gamma function (δ¼ 2.25 s, τ¼ 1.25) was convolved with each regressor
prior to GLM fitting. Following preprocessing and GLM analysis in native
surface space, t statistic maps for the contrast of auditory vs. visual
attention were resampled to the fsaverage cortical template surface for
the CF analyses. The VASA9 dataset group analysis (Fig. 1B), which was
not conducted in the original Michalka et al. (2015) publication, included
the additional higher-level analysis of contrast effect size and variability
across subjects using standard FS-FAST methodology. This analysis
included variance smoothing (Nichols and Holmes, 2002) but inten-
tionally did not correct for multiple comparisons. Our goal was to assess
whether the pattern of interleaved modality-selective LFC regions
observable at the individual subject level was also present at the group
level, even at a lenient statistical threshold.

2.3.1. VASA task design
Each participant from the VASA9 dataset participated in three to six t-

fMRI acquisitions during which they performed a covert visual and
auditory sustained attention (VASA) task (Supplemental Fig. 1A and B).
Both visual and auditory stimuli were simultaneously presented during
all trials of each block and the key task manipulation was the attended
sensory modality. Subjects were instructed to monitor one of four rapid
serially presented streams of letters and numbers (two auditory, two
visual) for any one of four target digits (1, 2, 3, or 4). Subjects attended to
only one sensory modality at a time, but auditory and visual stimuli were
always presented jointly within each trial to balance stimulus presenta-
tion across trials. The unattended streams contained only digits to in-
crease the overall difficulty of the task. A visual and auditory cue was
simultaneously presented prior to the task block to direct the subject to
the relevant stream. Subjects were instructed to press the key on a four
buttonMR-safe keypad that corresponded to an observed target. Each run
consisted of 12 blocks that were evenly divided into the six conditions
(‘listen left’, ‘listen right’, ‘watch left’, ‘watch right’, ‘passive’ (sensori-
motor control), or ‘fixation’ without the stimuli). Six distractor streams
(digits 1–6,8,9) were included as flanking stimuli around the covertly
attended visual locations (three flankers each) to balance task difficulty
in the visual attention condition to the auditory attention condition. Each
block contained 40 rapid serial presentations of the 10 stimuli (2 audi-
tory, 2 visual, 6 visual distractors) and lasted 26 s. During the sensori-
motor control condition, subjects were presented with the four auditory
and visual streams, however they contained only digits. Subjects were
instructed to press each of the four response keys once at any point during
the block.

2.3.2. VAWM task design
VAWM14 subjects each participated in eight t-fMRI acquisitions of a

working memory 2-back task, with each acquisition consisting of two
blocks of auditory 2-back, two blocks of visual 2-back and two blocks of
sensorimotor control (one visual, one auditory). Each block lasted 40 s
and consisted of 32 stimulus presentations (Supplemental Fig. 1C and D).
Eight seconds of fixation were acquired at the beginning, middle and end
of each acquisition. Block order was counterbalanced across acquisitions
and across subjects. Visual stimuli consisted of male and female faces
presented for 1 s, followed by 0.25 s inter-stimulus interval. Male and
female faces were presented in separate blocks. Auditory stimuli con-
sisted of diotic recordings of cat and dog vocalizations that lasted
300–600ms with 1.25 s between stimulus onsets. Cat and dog vocaliza-
tion were presented in separate blocks. A visually presented cue at the
beginning of each block instructed subjects which task condition would
follow (visual 2-back, auditory 2-back, visual passive, auditory passive).
During active 2-back blocks, subjects were instructed to make a ‘repeat’
button press using an MR-compatible button box if the currently pre-
sented stimulus exactly matched the stimulus two presentations prior, or
a ‘new’ button press if the stimulus did not match. During passive blocks,
no stimuli repeated and subjects were instructed to make a random
button press to each presentation.

https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
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2.4. rs-fMRI preprocessing

rs-fMRI preprocessing was carried out in individual native surface
space using FreeSurfer's FS-FAST toolset and custom MATLAB functions
developed in the lab. Each acquisition was slice-time corrected (ac-
counting for the SMS factor of 3 in VAWM14 acquisitions), corrected for
in-scan subject head motion, intensity normalized, registered to native
anatomical space with FreeSurfer's bbregister, resampled onto the in-
dividual's reconstructed cortical surfaces using trilinear interpolation and
spatially smoothed with a 3mm FWHM 2D Gaussian kernel along the
cortical surface. Using MATLAB, the following preprocessing steps (in
order) were then carried out on the surface-transformed data: linear
interpolation across high-motion time points (>0.5mm framewise
displacement; Power et al., 2012, 2014, 2015; Carp, 2013; Hallquist
et al., 2013), application of a fourth-order Butterworth temporal band-
pass filter (0.009< f < 0.08 Hz), temporal denoising with ICA-based
aCompCor (Behzadi et al., 2007) including 24 motion confound re-
gressors (Friston et al., 1996), and high-motion time point censoring via
deletion. For analyses involving temporal concatenation, each run was
temporally demeaned prior to concatenating the acquisitions into a sin-
gle file.

Three runs of a more advanced rs-fMRI protocol, relative to the
VASA9 dataset, were acquired for 13 subjects of the VAWM14 dataset.
These subjects were used to investigate the effect of increasing the
amount (duration) of rs-fMRI data incorporated in the correlation ana-
lyses conducted to establish vertex-wise rsFC profiles. For this investi-
gation, preprocessed rs-fMRI acquisitions were individually
concatenated into separate files containing 12 or 18min of rs-fMRI data.
The effect of increasing the length was tested by comparing prediction
accuracy using models trained on 6, 12 or 18min worth of rs-fMRI data.
All possible combinations of runs were examined in this analysis. Model
performance was averaged across samples for each level of rs-fMRI
length. For all other analyses, a single 6-min rs-fMRI acquisition was
used.

2.5. Search space definition

Using the VASA9 dataset, we established a search space that con-
tained a set of cortical vertices upon which to make predictions. The four
bilateral ROIs identified in Michalka et al. (2015) formed the basis of this
search space. The LFC ROIs (sPCS, tgPCS, iPCS and cIFS) were identified
from the contrast of auditory-vs-visual sustained attention after threshold
at p> 0.05, uncorrect, following standard GLM analysis, and then
resampled to fsaverage template space (see Experimental Design and
Statistical Analysis) (Fig. 1A). Separately for each hemisphere, any vertex
identified as belonging to any of the four bilateral ROIs, and for any
subject, were combined into a single LFC ROI. Thus, the search space
included every vertex possibly identified as modality-selective in the
original VASA task analysis (Michalka et al., 2015). The search space was
iteratively dilated and eroded to fill any small holes in the interior of the
search space while not expanding its outer borders. The advantage of this
approach is that it provides a relatively parsimonious solution for
limiting the area within which to make predictions while also main-
taining a large enough search space to ensure that ample variability is
incorporated into the model.

2.6. Cortical parcellations

Several previously published cortical parcellations were used to
define feature sets for modelling the relationship between connectivity
and functional responses. The primary parcellation used to investigate
various ‘connectome fingerprinting’ parameters was the Gordon et al.,
2016 rsFC boundary-based parcellation (GBB; 333 parcels; downloaded
from http://www.nil.wustl.edu/labs/petersen/Resources.html). Other
parcellations examined included the Human Connectome Project's (HCP)
Multi-Modal Parcellation (MMP; 360 total parcels; Glasser et al., 2016;
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downloaded from https://balsa.wustl.edu/study/show/RVVG) the Shen
et al., 2013 rsFC spectral clustering parcellation (SSC; 268 total parcels;
downloaded from https://www.nitrc.org/frs/?group_id¼51), the 17
network parcellation of Yeo et al. (2011) (YEO17; 115 total parcels;
downloaded from https://surfer.nmr.mgh.harvard.edu/fswiki/
CorticalParcellation_Yeo2011) and the curvature-based parcellation of
Destrieux et al., 2010) (DX; 150 total parcels; standard FreeSurfer tem-
plate) (Fig. 11A–F). MMP was used to investigate different regression
algorithms. It has the most total parcels of any other published parcel-
lation tested and was recently used to investigate the intrinsic connec-
tivity of these same bilateral modality-selective LFC regions using HCP
data (Tobyne et al., 2017). The YEO17 and DX parcellations are
surfaced-based and available on the fsaverage surface and thus needed no
modifications to adapt them for surface-based CF analyses. The GBB
parcellation was resampled from the fs_LR template surface (Van Essen
et al., 2012) to fsaverage cortical space using the tool ‘wb_command’
(Marcus et al., 2011) and the -label-resample function. The SSC parcel-
lation is downloaded as a volume-based parcellation and required several
preparatory steps for resampling to the cortical surface. The SSC volu-
metric parcellation in MNI152 space and at 2mm resolution was first
sampled to the cortical surface using wb_command's
–volume-to-surface-mapping function and the –enclosing algorithm. The
resulting surface parcellation was first dilated and then eroded with
wb_command's –label-dilate and –label-erode functions, respectively,
until holes within parcels or gaps between parcels were filled.

The correspondence between an individual's underlying functional
anatomy and a parcellation derived from group-level data may be para-
mount to the level of accuracy the CFmodelling procedure can achieve. It
is unclear to what degree the various available group-level parcellations
correspond to any one individual's unique functional topography and,
furthermore, correspondence is likely to vary across the brain due to the
known inter-subject variability in connectivity architecture (e.g., Mueller
et al., 2013). In our paradigm, we placed less importance on inference
and model coefficient interpretability in favor of optimizing the predic-
tive power of CFmodelling. To this end, we hypothesized that the level of
correspondence between a subject's functional topography and a given
parcellation may not be of great importance, provided that the possible
feature space (i.e. the brain) is sampled densely enough. To test this
possibility, we used icosahedrons divided into four increasing densities
(12, 42, 162 and 641 parcels per hemisphere) available from the standard
FreeSurfer distribution to parcellate the cortex and serve as a set of
‘random’ features that have no explicit anatomical or functional corre-
spondence with underlying cortical topography (Supplemental Figure 8).

Each hemisphere's parcellation was separately modified to exclude
parcels that overlapped considerably with the search space (Fig. 2A and
B, Fig. 11, Supplemental Figure 8). This was done to ensure that the
connectivity pattern of each vertex in the search space was not biased by
its inclusion in the mean time course of any target parcel. To designate a
set of parcels for exclusion, we first calculated the spatial overlap be-
tween each hemisphere's search space and all parcels of each parcella-
tion. Any parcel that overlapped more than 50% of its area with the
search space was removed from the parcellation. For parcellations based
upon the FreeSurfer icosahedrons, we additionally masked the medial
wall from each hemisphere's parcellation prior to feature extraction. The
number of parcels remaining for each parcellation before and after parcel
exclusion, as well as the total number of parcels used as features to
predict each hemisphere's search space, is presented in Supplemental
Table 1. All full and modified parcellations tested are presented in
Figs. 2B and 11, and Supplemental Figure 8.

2.7. Individual functional connectome definition

In order to operationally define an individual's functional connectome
for the search space, vertex-to-parcel functional connectivity was
computed for every search space vertex and all non-excluded parcels of a
given cortical parcellation. Each parcel's rs-fMRI time course was first
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Fig. 2. Parcellation modification and individual
functional connectome definition. (A) A parcellation
was modified by removing parcels that overlapped
more than 50% with the search space. The parcellation
of Gordon et al. (2016) was used in the primary ana-
lyses. (B) For each hemisphere of each individual
subject, a functional connectivity matrix (“individual
functional connectome”) was defined from
resting-state functional data by computing the Pearson
correlation between the time course of each vertex of
the search space and the average time course of the
vertices within each parcel of the modified
parcellation.
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computed by averaging across all vertices within the parcel and was then
correlated to that of every vertex within the search space. This was done
separately for each hemisphere using the masked set of ipsilateral parcels
and the full contralateral set (Fig. 2B). This process results in a matrix for
each subject's hemisphere, with dimensions v X p, where v is the number
of vertices in the search space and p is the number of parcels across the
rest of the brain.
2.8. Multiple regression algorithms and training procedures

All CF regression models were implemented in MATLAB. Similar to
other work (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016;
Smittenaar et al., 2017; Wang et al., 2017), a subject's functional
response to the VASA task activation (y) was conceptualized as a stan-
dard multiple linear regression problem, or the linear combination of
their unique functional connectivity profile (X), which can be measured,
and a set of coefficients (β), which must be inferred, plus residual error
(Fig. 3A), where i ¼ 1, …, n vertices and j ¼ 1, …, p parcels

yi ¼ β0 þ β1Xi1 þ β2Xi2 þ…þ βjXij þ εi

We employed ridge regression (Hoerl and Kennard, 1970) or Tikho-
nov regularization as our primary algorithm, which places a penalty on
the L2-norm of the regression coefficients. Additionally, ordinary least
squares (OLS), ridge or Tikhonov regularization (Hoerl and Kennard,
1970), least absolute shrinkage and selection operator (LASSO; Tibshir-
ani, 1996) and elastic net (Zou and Hastie, 2005) were compared using
the VASA9 dataset and GBB-derived functional connectomes (see Sup-
plemental Methods). All models were trained using a nested
leave-one-subject-out cross validation procedure (Hastie et al., 2009)
that separated model training and hyperparameter selection from model
accuracy assessment (Fig. 3A; Supplemental Figure 3). The resulting
model is a p x 1 vector where p is the number of parcels. Briefly, for each
iteration of the cross-validation procedure, one subject was selected to be
left out of the model outer loop. For the OLS model training, the
remaining n-1 subjects were used to train the model and there was no
inner, nested loop. The OLS model was trained once using n-1 subjects
and applied to the left-out subject to test model performance. The process
was iterated n times; once for each subject in the dataset. For LASSO,
ridge and elastic net regression algorithms, which each possess one or
more hyperparameters requiring tuning, one additional subject was
selected to be left out and the remaining n-2 subjects were entered into an
inner loop. Models were trained on the n-2 subsample across a range of
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hyperparameters and the resulting models were each applied to the inner
loop left out subject. This process was iterated n-1 times; leaving each
inner loop subject out once. Prior to assessing model performance using
the outer loop left out subject, the inner loop models were aggregated
and the best performing model across all inner loop models was deter-
mine by finding the minimum mean squared error across subjects. The
model coefficients corresponding to this model and its associated
hyperparameter(s) were then averaged across all nested loop iterations
and applied to the outer loop left out subject for final performance
assessment. This entire process was carried out n times; leaving each
outer loop subject out once.

2.8.1. Model predictions & accuracy assessment
CF model predictions (a vector of length v) of a subject's pattern of

activation across the search space was generated by multiplying the in-
dividual's functional connectome (i.e., vertex-to-parcel connectivity
matrix) by the model, f(x), which was constructed leaving out data from
that subject (Fig. 3B). Each subject of the VASA9 or VAWM14 datasets,
depending upon the analysis, was left out once. Accuracy metrics were
calculated for each iteration of the leave-one-out cross-validation outer
loop and averaged to yield an overall accuracy. Pearson correlation was
used to assess the accuracy of the various model specifications within the
search space, for each subject hemisphere. Pearson correlations were
normalized with Fisher's r-to-Z transformation for statistical analysis. Z
values were averaged and converted back to correlation values for group-
level reporting purposes.

We examined whether our predictive modelling procedures were
superior to a group average for predicting an individual's activation
pattern. We tested this by performing a set of leave-one-subject-out group
GLM (LOSO-GLM) analyses using the VASA9 and VAWM14 datasets. All
subjects' second-level t-fMRI auditory-vs-visual contrast results were first
resampled to fsaverage surface space. For each iteration of the LOSO-
GLM we selected one subject to be left out and performed a GLM anal-
ysis with the remaining subjects using the same procedures as in section
2.3. We performing variance smoothing (3mm FWHM) as low-N studies
are known to benefit from this procedure (Nichols and Holmes, 2002).
The resulting t statistic maps for the contrast of auditory attention over
visual attention were correlated to the left-out subject's activation pre-
dicted from the CF model for each hemisphere's search space. Correlation
coefficients were Fisher r-to-Z transformed prior to statistical analysis
and converted back to correlation for reporting. LOSO-GLM surface
overlays were generously thresholded at p< 0.01, uncorrected, before
visualization.



Fig. 3. Overview of the connectome fingerprinting model procedure. (A)
Functional responses are conceptualized as a linear regression problem from
which the inferred relationship between function and connectivity can be esti-
mated. A separate CF model was constructed for each subject using only the data
from other subjects. Penalized regression methods used a nested leave-one-out
cross-validation approach to select parameters. (B) Activation predictions
were generated by applying the subject’s unique functional connectome data to
the model. Prediction accuracy was assessed by a vertex-wise comparison
(correlation) with actual task activation for the subject.
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We examined whether an individual's unique pattern of t-fMRI acti-
vation is best predicted by their own connectome fingerprint, compared
to any other subject's connectivity distribution. We tested this in the
VASA9 and VAWM14 data by calculating the correlation between each
subject's t-fMRI activation pattern (normalized t statistics) and the pre-
dicted activation pattern obtained by applying each other subject's
functional connectome to the model. Thus, for each subject, n correlation
values were calculated per hemisphere: one using the subject's own
functional connectome and n-1 others using the functional connectome of
each of the remaining subjects in the respective dataset. This procedure
represents a rigorous test of whether an individual's own CF conveys a
significant advantage over another subject's CF.

The current standard for accurate reproduction of subject-specific
ROIs is to use a separately acquired t-fMRI localizer that is known to
recruit the same or similar regions to those of interest to the researcher
(e.g. Schwarzlose et al., 2005; Fedorenko et al., 2010; Nieto-Castanon
and Fedorenko, 2012). This technique provides an independent method
to localize an ROI for further analysis, but has a major drawback in that
the localizer task nearly always requires multiple time consuming and
expensive t-fMRI acquisitions in addition to the acquisitions for the
original task. We compared the performance of the CF prediction method
to the task localizer method by using the VAWM task as a separate t-fMRI
localizer in seven subjects that overlapped between the VASA9 and
VAWM14 datasets. For each of the 7 overlapping subjects we conducted
standard GLM analysis of the VAWM task, but with a varying number of
input acquisitions (1 run through 8 runs). We performed a bootstrapping
procedure that sampled 100 times with replacement from each of the
eight possible runs for a given iteration (e.g. 100 separate GLM analyses
performed using one run sampled from the possible eight runs; 100 GLM's
sampling two runs sampled from the possible eight runs; etc.). For each
subject, the Pearson correlation between their VAWM auditory-vs-visual
covert attention contrast (using a variable number of t-fMRI runs) and
their VASA auditory-vs-visual covert attention contrast was calculated
within each hemisphere's search space. We then estimated the average
number of t-fMRI acquisitions at which the accuracy of the localizer
approached the average accuracy from the connectome fingerprinting
technique. In this way, the approximate number of t-fMRI acquisitions
required to produce results equivalent to the connectome fingerprinting
prediction from a single rs-fMRI acquisition could be assessed.

2.9. Statistical analysis

All statistical analyses were computed with MATLAB (R2016b, The
MathWorks, Natick, MA; RRID: SCR_001622). Model performance was
tested for significant difference from zero with Student's t-tests and
against the LOSO-GLM analyses with paired t-tests. Significant
improvement in model accuracy due to increasing the length of the
resting-state time series was tested with paired t-tests. Significant dif-
ferences between predicted activation and localizer accuracy, model
accuracy due to regression algorithm choice or parcellation choice were
performed with paired t-tests.

3. Results

3.1. Prediction accuracy on the VASA9 dataset

For the VASA9 dataset, we first computed each subject's functional
connectome for the LFC search space in each hemisphere, as the vertex-
to-parcel correlations in resting-state fMRI data for each vertex in the LFC
search space and each cortical parcel outside the LFC search space (see
Methods; Fig. 2). This analysis used the GBB cortical parcellation (Gor-
don et al., 2016). In order to predict each subject's LFC VASA response
pattern at the level of an individual vertex, we first left-out that subject's
data and constructed a CF model from the functional connectome and
task activation data of all other subjects (see Methods, Fig. 3A). This
analysis used Tikhonov regularization (ridge regression) and a nested
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cross-validation procedure to optimize the regularization coefficient (see
Methods, Supplemental Figure 3). The resulting CF model was then
applied to the connectome data taken from within the LFC search space
of the left-out subject, producing predicted VASA responses for each LFC
vertex. We tested the accuracy of the CF predictions by comparing model
predictions against that subject's actual VASA task activation data. CF
model accuracy was assessed by a Pearson correlation between actual
and CF predicted data (separately for each hemisphere). CF model ac-
curacy was compared against the leave-one-subject-out group-average
GLM (LOSO-GLM) prediction, as assessed by Pearson correlation with the
actual data. Fig. 4A displays the actual, CF prediction and LOSO-GLM
results for three representative subjects from the VASA9 dataset. Pear-
son correlation values are indicated in the CF prediction and LOSO-GLM
columns. Predictions made with the GBB parcellation and using the ridge
regression algorithm were highly accurate; the predicted activation
patterns correlated very strongly with the actual VASA activation pat-
terns, while the LOSO-GLM predictions did not. Results are summarized
across the group in Fig. 4B. The average Fisher-transformed correlation
accuracy was 0.67 in the left hemisphere and 0.71 in the right hemi-
sphere – significantly above the mean LOSO-GLM correlation of 0.18 and
0.22, respectively, and well outside their respective 95% confidence in-
tervals (left: p< 0.0001, t (8)¼ 7.47; right: p< 0.0001, t (8)¼ 9.42;
paired t-tests). Actual individual subject task activation, CF predicted
activation, and LOSO-GLM group-average activation results for all
VASA9 subjects are depicted in Supplemental Figure 3. For illustrative
purposes, the average coefficient strength across subjects for this primary
analysis are depicted in Supplemental Figure 4. For our primary analysis,
we also calculated the ‘proportion of ground truth’ and Dice Coefficient



Fig. 4. Connectome Fingerprinting accurately predicts individual subject task activation patterns within modality-selective lateral frontal cortex in the VASA attention
task. (A) Actual VASA task activation (blue background), CF predicted activation (green background), and activation predicted by a leave-one-subject-out group GLM
(red background) in LFC for three example subjects. The correlation of Actual to CF Predicted and Actual to Group GLM are displayed within the respective panels.
Maps were individually normalized within the LFC search space. (B) Model performance, quantified as the Pearson correlation between predicted activation and actual
activation, for all subjects from the VASA9 dataset are displayed. Mean correlations (black circle) for the left and right hemispheres was 0.67 and 0.71, respectively
(Fisher r-to-Z transformed). CF predictions were significantly better than the application of a LOSO group GLM (red solid lines; dashed red lines¼ 95% confidence
interval) to the left-out subject (left: p< 0.0001, t¼ 7.47; right: p< 0.0001, t¼ 9.42; paired t-tests).

Fig. 5. An individual’s LFC functional activation in
the VASA task is best predicted by their own func-
tional connectome. Each subject’s left (blue triangle)
and right (red triangle) hemisphere prediction accu-
racy (correlation between actual and predicted acti-
vation) is compared to the prediction accuracy
obtained using the functional connectome of each
other subject (gray circles). Each subject’s own func-
tional connectome data outperformed the predictions
obtained using other subjects’ functional con-
nectomes, with one exception (S9, RH).
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of overlap as secondary accuracy metrics (see Supplemental Methods).
At the threshold used in Figure 4 and Figure 7, all regions were signifi-
cantly well predicted by the CF procedure (Supplemental Figure 5). Using
a simple thresholding procedure to convert the model's
continuous-valued predictions into categorical ROI estimates, Dice co-
efficients of 0.54, 0.41, 0.37, and 0.50 were obtained for sPCS, tgPCS,
iPCS, and cIFS in the left hemisphere and 0.66, 0.45, 0.47, and 0.38 in the
right hemisphere, respectively (see Supplemental Figure 6).

Our primary analysis in Fig. 4 excluded all parcels for which the
majority of the parcel fell within our search space (see Methods). We also
repeated our analysis for the GBB parcellation, excluding all parcels that
had any overlap with the search space. Not surprisingly, exclusion of
these regions of small overlap had negligible impact on the findings. A
non-significant increase in performance was observed in the left hemi-
sphere (0.6692 vs. 0.6723; p¼ 0.1805; t (8)¼ -1.47; paired t-test) while a
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non-significant decrease was observed in right hemisphere (0.7125 vs.
0.7098; p¼ 0.656; t (8)¼ 0.4626; paired t-test).

We next examined how well a subject's own functional connectome
relates to their specific VASA response pattern. We compared each sub-
ject's VASA t-fMRI recruitment with predictions built from each other
subject's connectivity patterns (individual functional connectome) in
order to assess the predictive specificity of a subject's unique connectivity
pattern. This analysis confirmed that task activation for individual
VASA9 subjects were almost always (in 143 out of 144 comparisons)
better predicted by their own functional connectome than by any other
subject's functional connectome, with only a single exception from one
hemisphere (Fig. 5). Thus, the large degree of variability across subjects'
VASA responses is well captured by the unique functional connectome of
a single subject.



Fig. 6. Task localizer accuracy as a function of the number of t-fMRI acquisition runs. The mean accuracy of the VAWM task localizer (thick solid line) increases with
number of VAWM t-fMRI acquisition runs used, stabilizing at ~3 acquisitions. Individual subject results are shown in thin solid lines. In both hemispheres, the VAWM
localizer requires 3 runs (4.5 minutes each) to equate or surpass the accuracy of the CF predictions (dashed line), which require only a single 6-minute run of rs-fMRI.

Fig. 7. Connectome Fingerprinting accurately predicts recruitment of modality-selective lateral frontal cortex by working memory (VAWM task). (A) Actual (blue
background), CF Predicted (green background) and Group GLM (red background) LFC results for three example subjects from the VAWM14 dataset. The correlation of
Actual-to-Predicted and Actual-to-Group are displayed within the respective panels. Maps were individually normalized within the LFC search space. (B) Actual-to-
Predicted Mean correlations (filled black circle) for the left and right hemispheres was 0.65 and 0.79 respectively (Fisher r-to-Z transformed). CF predictions were
significantly better than the application of a leave-one-subject-out group GLM (solid red lines, dashed red lines¼ 95% confidence interval) to the left-out subject (left:
p< 0.0001, t(13)¼ 4.42; right: p< 0.0001, t(13)¼ 8.64; paired t-tests).
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3.2. CF prediction vs. task localizer performance

Currently, the most effective and established method for identifying
regions of interest (ROIs) in individual subjects is to acquire a separate,
within-subject functional localizer task dataset (e.g. Schwarzlose et al.,
2005; Fedorenko et al., 2010; Nieto-Castanon and Fedorenko, 2012). We
compared the efficacy of the CF technique with the within-subject
functional localizer approach. Seven subjects participated in both the
VASA9 and VAWM14 datasets. Previously, Noyce et al., 2017 reported
that there was a high degree of correspondence in the location of each of
the four sensory-selective LFC regions between the VASA and VAWM
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tasks. Here, we quantified the predictive power of the within-subject task
localizer by computing the Pearson correlation between the VASA and
VAWM task activation across the LFC search space for these subjects. Our
analysis parametrically varied the amount of VAWM task data included
in the predictions, from 1 to 8 task runs (4.5 min per run). Fig. 6 displays
the comparison between the CF technique and the VAWM localizer task
in reproducing the observed pattern of activation from the VASA task.
Pearson correlation between VASA and VAWM significantly increased as
additional t-fMRI runs were added (left: p< 0.0001, F(2,5)¼ 19.22; right:
p¼ 0.05, F(2,5)¼ 2.25; one-way ANOVA), consistent with an increase in
functional signal-to-noise with added task acquisitions. The average
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curve appears to asymptote at three runs in both hemispheres. The
crossing point for the solid and dashed black lines indicates the number
of t-fMRI acquisitions at which the VAWM localizer task, on average,
equates the performance of the CF technique performed with a single
rs-fMRI acquisition. In both hemispheres, the lines crossed first at three
acquisitions and, notably, did not diverge much further when t-fMRI
acquisition runs four through eight were added. This indicates that a
single 6-min rs-fMRI acquisition run produces results on par with three
4.5-min t-fMRI acquisition runs. In addition, there is minimal gain in
acquiring five additional t-fMRI acquisition runs relative to results ob-
tained with the single resting-state acquisition run. To identify an
upper-bound on performance, we examined task replicability for the
VAWM dataset by conducting separate GLM's for odd and even runs and
correlating their resulting normalized T-statistic maps (i.e. 4 odd runs vs.
4 even runs). Correlation were 0.90 in each hemisphere. This indicates
that future advanced in CF methods could potentially achieve greater
accuracy.
3.3. Validation of CF technique with visual/auditory working memory task

We also examined the ability of the CF technique to predict modality-
selective task activation in LFC in a different task, the VAWM working
memory paradigm. We examined the VAWM14 dataset using the same
CF methods described above for the VASA9 dataset, including using only
a single run of rs-fMRI data, but trained the model using VAWM14 data
only. Our results verify that CF modelling techniques accurately predict
unique patterns of modality selective functional recruitment in LFC at the
individual level (Fig. 7A). The mean correlation between the CF pre-
dictions and actual VAWM responses was 0.57 (p< 0.0001, t
(13)¼ 9.35) in the left hemisphere and 0.66 (p< 0.0001, t (13)¼ 10.28)
in the right hemisphere (Fig. 7B). Similar to the VASA9 analyses, we
found that the CF technique also predicts modality-selective working
memory functional recruitment in LFC significantly more accurately than
a group analysis (left: p< 0.0001, t (13)¼ 5.09; right: p< 0.0001, t
(13)¼ 10.52; paired t-tests). To evaluate whether individual subjects
within the VAWM14 dataset are best predicted using their own func-
tional connectome, we conducted the same analysis presented in Fig. 5
on VAWM14 data. We found that VAWM14 task activation was generally
better predicted by a subject's own functional connectome than by that of
Fig. 8. An individual’s lateral frontal cortex functional activation in the VAWM task is
(blue triangle) and right (red triangle) correlation between actual and predicted is com
(gray circles).
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any other subject (Fig. 8), confirming that this premise holds for both
datasets presented here. All actual surfaces, predicted surfaces, and
LOSO-GLM surfaces for the VAWM14 dataset are presented in Supple-
mental Figure 8, for both hemispheres.

3.4. Effect of resting state time series length

The VAWM14 dataset was used to examine CF model performance
changes as the number of resting state acquisitions increased (Fig. 9). The
majority of VASA9 subjects possessed only 1 run of rs-fMRI data while
thirteen of the VAWM14 subjects participated in three runs of a higher
resolution and lower TR rs-fMRI acquisition. CF predictions were made
using rs-fMRI input equal to 6-, 12-, or 18-min of data and compared
using paired t-tests. Performance of the CF modelling method signifi-
cantly increased as time series length was increased from 6-min to 12-
min (left: p< 0.0001, t(12)¼ 6.49; right: p< 0.0001, t (12)¼ 10.98)
and again from 12-min to 18-min (left: p< 0.0001, t(12)¼ 6.66; right:
p< 0.0001, t (12)¼ 7.64). Model predictions made with 18-min of rs-
fMRI data were significantly more accurate than those made with 6-
min (left: p< 0.0001, t (12)¼ 6.93; right: p< 0.0001, t (12)¼ 10.16).

3.5. Effect of regression algorithm, regularization and parcellation method

We also evaluated how the specific form of regression algorithm
influenced performance of the CF technique. We hypothesized that
model performance would benefit from penalized regression algorithms
due to the high degree of multicollinearity present in the parcellation-
based connectivity distributions. The selected models used were ordi-
nary least squares (OLS), least absolute shrinkage and selection operator
(LASSO), ridge regression (ridge), and elastic net (EN). The performance
of models trained on the chosen set of linear regression algorithms using
MMP-derived CFs is summarized in Fig. 10. LASSO, ridge and EN each
dramatically outperformed OLS (p> 0.001). The performance of models
trained with LASSO, ridge or EN regression algorithms were nearly
indistinguishable; indicating that the connectivity distributions possess a
degree of multicollinearity and the predictions benefit from some amount
of regularization.

We evaluated how the chosen parcellation scheme affected the ac-
curacy of the CF technique with the VASA9 dataset. The full andmodified
generally best predicted by their own functional connectome. Each subject’s left
pared to the correlation between their actual and each other subject’s prediction



Fig. 9. Effect of resting state acquisition length on CF model performance for
the VAWM task. Both hemisphere’s demonstrated improvement as additional
resting state acquisitions were added to the modelling procedure (all p< 0.0001;
paired t-tests with Holm-Bonferroni correction). *p< 0.0001
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cortical parcellations used for these analyses are displayed in Figure 2B
and Figure 11A–F (see Methods for additional explanation). The aggre-
gate performance of models trained using ridge regression and the cho-
sen set of parcellations is reported in Fig. 11G. The best performing
models used functional connectomes derived from the MMP and GBB
parcellations, although the performance difference between parcellations
was not significant (Supplemental Table 2). GBB demonstrated a slight
numerical advantage for the left hemisphere, while MMP was more ac-
curate in the right.

In addition to evaluating model performance with previously pub-
lished cortical parcellations, we also tested several ‘random’ surface
parcellations with varying numbers of parcels per hemisphere: 12, 42,
162, and 642. The random parcellations are available as surfaces in the
standard FreeSurfer release. Performance for the left hemisphere
increased with the number of parcels, while performance in the right
hemisphere leveled off (Fig. 11H). It is unclear whether LH performance
would continue to improve at even higher parcel densities. Performance
with the Random162 parcellation matched the performance of MPP,
GBB, or Shen (non-significant t-tests, all p> 0.1) which have similar
Fig. 10. CF model performance for each form of regression algorithm. Only the
three penalized regression (‘regularized’) algorithms were significantly different
from zero (paired t-test). In both hemispheres, ordinary least squares (OLS) was
significantly outperformed by Ridge and EN (left: p<0.0001, F¼ 10.45; right:
p< 0.01, F¼ 6.09; one-way ANOVA with Tukey’s post-hoc test). LASSO
significantly outperformed OLS in the left hemisphere only. LASSO¼ least ab-
solute shrinkage and selection operator. EN ¼ elastic net. *p< 0.01.
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numbers of parcels per hemisphere (180, 167 and 134). Performance
with the Random42 parcellation matched the performance of the DX and
Yeo17 parcellations (non-significant paired t-tests, all p> 0.15), which
have 75 and 58 parcels in a hemisphere. These results indicate that CF
model performance is largely independent of the specific form of cortical
parcellation assumed, so long as a sufficient number of parcels are
defined.

4. Discussion

We used a regression-based modelling technique called ‘connectome
fingerprinting’ (CF), first introduced by Saygin et al. (2011) to investi-
gate whether task-free functional connectivity could predict a subject's
actual sensory modality-selective task activation. Our findings indicate
that we can accurately predict the location and magnitude of functional
recruitment of sensory modality-selective cognitive regions in lateral
frontal cortex (LFC) during demanding attention and working memory
tasks using only an individual's unique functional connectome. Our
models significantly outperformed a group analysis and predictions were
significantly better when a subject's own functional connectome was
used – as opposed to any other subject's connectome. Model accuracy was
significantly improved using penalized regression but was robust across
three different penalized regression paradigms. The specific choice of
cortical parcellation had little impact on CF model performance, so long
as a sufficient number of parcels were defined. CF predictions made with
6min of resting state data were as accurate at reproducing a subject's
pattern of functional recruitment as a separate task localizer acquisition
requiring more than twice as much data and the performance of a
cognitively demanding fMRI task. Moreover, CF predictions improved
with the inclusion of additional resting-state data. These findings indi-
cate the capability of CF predictions to succeed in identifying
sensory-selective frontal cortical regions, which consist of small func-
tional regions with relatively high inter-subject variability in region
location. Our results provide a blueprint for performing effective CF
predictions. These updated methodologies may have applications in
basic research and in precision medicine.

4.1. Connectome fingerprint LFC predictions are as accurate as an
independent task localizer

Several recent publications have revealed strong sensory biases in
multiple higher order cognitive regions in lateral frontal cortex (Braga
et al., 2017b, 2017b; Michalka et al., 2015; Mayer et al., 2017; Noyce
et al., 2017). Our results reveal that CF techniques can be used to predict
sustained attention and working memory task activation in
modality-selective LFC regions. We found that, for both a selective
attention task paradigm (VASA) and a working memory task paradigm
(VAWM), we could accurately predict both the location andmagnitude of
task recruitment using a subject's own resting-state functional connec-
tivity pattern. CF model prediction accuracy was on par with the accu-
racy obtained from a separately acquired task localizer. Noyce et al.
(2017) previously found that LFC regions recruited by the VAWM task
have a high degree of overlap with VASA regions – indicating that it is an
excellent independent localizer for modality-selective regions in LFC.
Predictions made using the CF technique to reproduce an individual's
pattern of activation were as good as would be indicated by the inde-
pendent VAWM localizer. Furthermore, parametrically manipulating the
number of t-fMRI acquisitions that were entered into the second-level
GLM analysis revealed that a single 6-min rs-fMRI acquisition could
produce results as accurate as three 4.5-min t-fMRI acquisitions – a
substantial time and money savings.

Mapping lateral frontal cortex represents a significant research
endeavor in neuroscience. The functional connectivity of this large sec-
tion of cortex is highly variable across subjects (Mueller et al., 2013) and
robust identification of an individual's functional topography is a chal-
lenge. Much of previous research into LFC has utilized group analyses,



Fig. 11. Visualization of the four group-level parcel-
lations tested, in addition to Gordon et al., 2016 (see
Fig. 2). (A,B) Left and right hemisphere lateral surfaces
indicating the extent of excluded parcels (white), (C,
D) unmasked lateral surfaces and (E,F) medial surfaces
display the parcels from the various parcellation
schemes. Depending upon the hemisphere analyzed,
the predictor set include parcels visible on the masked
ipsilateral (A or B) and the contralateral unmasked
surface (C or D) as well as always included both
medial surfaces (E and F). Dark gray shading indicates
either unlabeled cortex from the original publication
(i.e. the parcellation is made available without these
vertices labelled) or non-cortex vertices (i.e. the
‘medial wall’). (G) Parcellation scheme has little effect
on model accuracy. No group-based parcellation
schemes performed significantly better than the
others. GBB and MMP demonstrated slight perfor-
mance advantages over SCC, YEO17 and DX parcel-
lations, however there were no significant differences
between any parcellation type in either hemisphere
(left: p¼0.92; right: p¼0.98; one-way ANOVA). (H)
Model performance with random parcellations of
varying numbers of parcels. Paired t-tests indicated
that there is a significant increase in accuracy in the
left hemisphere as parcel density increases from 12 to
42 and from 42 to 162.
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which can obscure small, variably located regions due to group averaging
effects, as in Fig. 1B. For example, Mayer et al. (2017) found that 30 or
more subjects were required to reliably localize several auditory- and
visual-selective regions (different from those presented here) using a
demanding multi-sensory Stroop task. The four bilateral LFC regions
investigated here are not visible in group level analysis of this study
population (Fig. 1B) and demonstrate a high degree of inter-individual
variability (Supplemental Figures 3 and 6); however, the pattern of
four interleaved sensory-selective regions per hemisphere is fully
observable in 90% of subjects. CF analyses have the power to identify
these small LFC regions at the individual subject level and predict an
individual's unique topography. This represents a significant step for-
ward in the field's ability to reliably identify regions in LFC.

As an alternative to group level analyses, several recent publications
have introduced the idea of collecting exceedingly large amounts of data
on individual subject's: so-called ‘deep sampling’ (Laumann et al., 2015;
Braga and Buckner, 2017a; Gordon et al., 2017). This has the benefit of
increasing the signal-to-noise for t-fMRI and rs-fMRI but comes at a
dramatically increased monetary cost. Collecting such larger amounts of
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data is beyond the resources of most neuroimaging laboratories.
Furthermore, ‘deep sampling’ methods place high demands on subjects,
thus greatly limiting the application to clinical populations. CF prediction
techniques may provide a happy medium between large group level
studies and highly detailed individual studies by leveraging information
from individual patterns of activation and connectivity from studies with
a more typical sample size.

The realization that a modest amount of rs-fMRI data can be used, and
re-used, to accurately generate task activation patterns in individuals has
a multitude of implications for basic neuroscience research. With prop-
erly trained models, researchers could forego the expensive and time-
consuming process of acquiring separate task localizers when required
to generate independent regions of interest. As the movement towards
open science continues, researchers could also produce and accumulate
CF models based upon their own in-lab datasets that other research could
apply to their own data. This practice would benefit recent calls for
greater transparency and openness between researchers (e.g. Poldrack
et al., 2017; Nichols et al., 2017) and would facilitate the sharing of re-
sults across institutions – perhaps without the infrastructure and hosting
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requirements (since CF models are highly compressed linking functions
between connectivity and t-fMRI with a very small data footprint)
encountered by large data sharing initiatives of unprocessed data such as
openfMRI (https://openfmri.org), highly processed data such as Brain-
map (http://www.brainmap.org) or mixed data such as the Human
Connectome Project (https://humanconnectome.org). Future research
will need to investigate whether CF techniques remain as accurate when
applied across research settings, institutions and MRI scanners. To
facilitate such work, we have made our final CF models available for
download from sites.bu.edu/fmri/fingerprinting.

CF techniques hold great promise for application in the clinical
setting. It is difficult to acquire data in many clinical populations for
numerous reasons, including budgetary concerns, patient comfort, and
data quality considerations (e.g. movement-induced artifacts). CF tech-
niques could be applied to past and future clinical datasets that acquire
only anatomical and rs-fMRI data. Connectome fingerprinting has been
used to examine category selectivity in blind individuals (Wang et al.,
2017) and to predict language areas in presurgical populations (Parker
Jones et al., 2017). Once firmly established and validated, CF techniques
could be brought into the clinic directly to study and monitor individual
patients; however, much work remains to be done to achieve clinical
standards for reliability and accuracy.

4.2. Further recommendations for future research and development

Prior CF analyses have employed structural (Saygin et al., 2011;
Osher et al., 2016; Wang et al., 2017; Smittenaar et al., 2017) and
functional (Tavor et al., 2016; Parker Jones et al., 2017) connectivity.
Here, we used functional connectivity to reveal the fine-scale organiza-
tion of multiple regions of two intertwined visual- and auditory-selective
networks in frontal cortex. We evaluated how model accuracy changed
given a set of regression algorithms and a set of cortical parcellations. Our
results indicate that functional connectomes derived from any parcella-
tion that adequately samples the functionally variable regions that make
up the cortical surface can be used to make accurate predictions. These
findings demonstrate that CF predictions significantly benefit from
penalized regression algorithms (Fig. 10). Ridge, LASSO and EN regres-
sion all produced large and significant gains over OLS regression. This
likely arises from features that share similar connectivity profiles (i.e.
nodes of the same network). We also found that increasing the amount of
rs-fMRI data acquired provided a statistically significant advantage for
CF prediction accuracy. Recent ‘deep sampling’ work suggests that
approximately 20min of rs-fMRI data is required to stabilize many
functional connectivity measures (Gordon et al., 2017). Our work is
largely consistent with this finding; however subsequent work should be
conducted to extend the amount of rs-fMRI data included in the analysis
past the 18-min tested here. Despite the accuracy gains with additional
rs-fMRI acquisition, we also emphasize that a single 6-min resting-state
acquisition is sufficient to provide highly accurate predictions that are
on par with a separate within-subject localizer.

5. Conclusion

In conclusion, we have demonstrated that the connectome fingerprint
technique accurately predicted the functional recruitment of modality-
selective lateral frontal cortex in selective attention and working mem-
ory tasks. Furthermore, these predictions are as accurate as a separately
acquired task localizer, but at a substantial time and cost savings. This
work is the first to provide a structured investigation of a relatively small
space of the possible methodological choices available when performing
CF predictions. Despite the promise connectome fingerprinting holds for
basic, clinical and applied research the use of machine learning for pre-
dicting an individual's brain topography remains in its infancy. More
research and development is urgently needed to maximize the predictive
power of connectome fingerprinting and realize its full potential as an
investigative and diagnostic tool.
184
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