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A fundamental assumption in neuroscience is that function is 
deeply rooted in anatomical structure, such as extrinsic connectiv-
ity. A region’s connectivity pattern determines both the information 
available as inputs from other regions and its output and influence 
on other areas. Indeed, changes in connectivity have been shown 
to occur at the boundaries of functionally defined regions that can 
be identified through cytoarchitectonics (supplementary motor area 
versus pre-supplementary motor area)1. If anatomical connectivity is 
important for functional operations, then variation in connectivity 
should correspond with and predict variation in function, even in 
regions that are not at present anatomically definable or not spatially 
consistent across the population. This intuitive claim has not yet been 
formally explored, though various frameworks for such an analysis 
have been suggested2.

In the absence of any extra information, can structural connectivity 
accurately predict the location and degree of the functional response 
in the brain? The extrinsic connectivity pattern of a structure may 
contain sufficient information to predict the extent to which each 
voxel will respond to a given functional contrast. This hypothesis 
could be tested using a functional contrast that consistently elicits 
robust responses, and constrained to an anatomical structure that 
reliably encapsulates such responses across participants, even if they 
vary spatially within the region.

Regions involved in face processing may be well suited for directly 
testing this conjecture, given their posited specificity of function 
and replicability across brain imaging techniques, participants and 
species. A dedicated network of brain regions has been consistently 
reported to selectively respond to faces, as revealed by functional 

magnetic resonance imaging (fMRI)3,4, single-unit recordings5,6 and 
microstimulation7. The most robust and selective component of this 
network is in the fusiform gyrus8, in a functionally defined region 
that is selectively activated in response to faces relative to objects9 or 
scenes10. This region is typically larger and more reliably observed in 
the right fusiform and is known as the fusiform face area (FFA). This 
is consistent with a wide range of evidence that most aspects of face 
perception are right-hemisphere dominant in the human brain8,11,12. 
Further, damage to the right fusiform disproportionately impairs face 
recognition, sometimes even without disturbing other stimulus cat-
egories13,14. Given that it is the right fusiform that best responds to 
faces across participants (for example, refs. 8,15), we chose this region 
as a testing ground for modeling brain activity as a function of struc-
tural connectivity.

A purely structural substrate of face-selective cortices has not yet 
been established, possibly owing to complications in relating classic 
approaches of connectivity (such as histological tract-tracing) with 
functional localization in the same individual. However, diffusion-
weighted imaging (DWI), an MRI technique that measures the propen-
sity of water to travel along myelinated axons, can be used to estimate 
brain connectivity in vivo16,17, which can be analyzed alongside fMRI 
data for the same individual. Using a probabilistic tractography algo-
rithm, we defined the connection probability of each right fusiform 
voxel (seeds) to all other anatomically parcellated regions (targets) 
(see Supplementary Figs. 1 and 2 for exemplar pathways18–20).  
For the same participants, we calculated the functional activation of 
faces relative to scenes for each voxel in the fusiform. We then ana-
lyzed the relationship between functional activation in the fusiform 
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A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions 
of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity 
in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to 
predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard 
group-average benchmark. The structure–function relationship discovered from the initial participants was highly robust in 
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and its connection probabilities with the rest of the brain, through a 
multivariate, voxel-by-voxel approach. This approach allowed us to 
directly test the conjecture that although the locations of face-selective 
voxels are variable across the population, their extrinsic connections 
vary systematically with function in each individual, such that the 
connection patterns alone can predict functional activation.

Specifically, we used a least-squares linear regression to model the 
relationship between each fusiform voxel’s connection probabilities 
and its functional activation by means of a leave-one-subject-out 
cross-validation approach, or LOOCV (Fig. 1). The resulting model 
was then applied to the remaining participants’ connectivity data, 
and prediction accuracies were tested against two control models 
and a benchmark model built from a functional group average. The 
group average is commonly used as a way to build face-selective 
regions of interest (ROIs) in fMRI studies21 and thus provides a 
standard that a connectivity-based method should meet. The con-
trol models, designed from random permutations and Euclidian  
distance (see Online Methods), were implemented to evaluate against 
potential confounds.

To assure that a model is not overly fit to the population it was 
built from, it is good practice to design a model built from all the 
participants in the LOOCV and apply it to a separate pool of obser-
vations naive to the model-building procedure22. We applied such 
a model to an independent group of participants from a separate 
study. Analysis of this second group provided further examination 
of the generalizability of the models, as their data were acquired 

with different DWI scan parameters and a different functional  
task from the first group of participants.

RESULTS
Comparisons between connectivity and control models
After an initial analysis determined that the data possessed sufficient 
structure for its use in prediction (Supplementary Table 1), we pro-
ceeded to build the connectivity models and their controls. A linear 
regression was trained on the connectivity and fMRI data (contrast for 
faces >  scenes) for all participants but one, and the model was applied 
to the remaining participant’s connectivity data to make predictions of 
this participant’s fMRI data in the right fusiform gyrus; this was done 
iteratively across all participants. We calculated the absolute error per 
voxel as the difference between the predicted and actual fMRI images, 
and mean absolute error (MAE; Table 1) as a measure of accuracy.

Next, we performed random permutation tests23 to statistically 
assess the performance of the connectivity model. We built models 

Figure 1  Schematic model design. (a) Linear 
regression models were trained on all but 
one participant’s data in group 1. The 22 
participants’ fMRI data for each voxel in  
the fusiform gyrus (show in yellow on the 
brain images) are depicted by circles that  
are color-coded from red to blue, illustrating  
their responses to the contrast of faces >  
scenes. Each voxel’s corresponding 
connection probabilities (for the connectivity  
model) or Euclidian distances (for the  
distance model) to each target brain region 
are depicted by the grayscale circles. The 
fMRI data and connectivity or distance 
data from each fusiform voxel for the 22 
participants were used to train the model, 
and the resulting model, f(x), was applied 
to the remaining participant’s connectivity 
or distance data, resulting in predicted 
fMRI values for each fusiform voxel. The 
predicted values were then compared to that 
participant’s observed fMRI values and the 
MAE calculated for each participant. This 
LOOCV was done iteratively through all the 
participants, such that each participant 
had a predicted fMRI image based on a 
regression from all the other participants. 
Err, model residual error. (b) Similarly, a 
LOOCV procedure was performed for the 
group-average model, but rather than training 
a linear regression, each participant’s whole-
brain fMRI data were spatially normalized into 
MNI space and the data from participants 
were superimposed to create composite maps; 
a t-statistic image was then generated from 
the random-effects analysis. This image was 
registered to the remaining participant’s 
native space, and the fusiform gyrus was extracted. This activation predicted on the basis of a group analysis was then compared to that 
participant’s observed activation, and an MAE was computed per voxel. SPM, statistical parametric mapping. 

Table 1  MAE for voxels in the fusiform gyrus across subjects
Group 1 Group 2

Connectivity 0.65 ± 0.013 0.68 ± 0.019
Permutation 0.77 ± 0.008 NA
Distance 1.06 ± 0.066 1.05 ± 0.051
Group average 0.78 ± 0.031 0.82 ± 0.039

Prediction errors for models based on connectivity, mean random permutations, 
distance and group average are given ± s.e.m. in standard units. NA, not applicable.
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designed from the same data but with shuffled pairings between 
connectivity and functional responses, and, by repeating this proc-
ess 5,000 times, we generated a distribution of accuracies from ran-
dom models for each individual. Relative to this distribution, the 
connectivity models successfully predicted functional selectivity 
across voxels in 22 out of 23 participants’ fusiform gyri at a thresh-
old of P < 0.001.

The distance from a seed voxel to a target region may potentially 
bias the connection estimates because local connections are believed 
to be more probable than distant ones24,25. In addition, the lateral wall 
of the fusiform gyrus tends to be face selective, whereas the medial 
wall tends to be more scene selective. The connectivity model could 
therefore rely on the relative distance of each voxel to each target, 
which is basically a high-dimensional spatial coordinate frame.  
To ensure that the results of the connectivity model were not driven by 
such unintended relationships, we generated distance control models 
using the same LOOCV method. These models were designed iden-
tically to the connectivity model, with the exception that they used 
Euclidian distance of the fusiform voxels to other brain regions’ center 

of mass, rather than their connectivity. The distance models thus use 
the same number of predictors as the connectivity models and serve 
as controls for possible overfitting.

We directly compared the performance of the connectivity and 
distance models, both across participants (on the basis of MAE) 
and within participants (on the basis of absolute error). Across 
participants, the connectivity model was significantly more accu-
rate than the distance model (two-tailed t-test of connectivity 
MAE versus distance MAE, t22 = −6.44, P = 1.75 × 10−6). A direct 
comparison of the error per voxel at the individual subject level 
revealed that the connectivity-based predictions were signifi-
cantly better than distance in 21 of 23 participants at a threshold of  
P < 0.001 (Fig. 2a).

Comparisons to group-average models
We also performed a group analysis on the whole-brain fMRI data 
in an iterative LOOCV fashion: a random effects test was performed 
on the contrast images for faces > scenes for all but one participant 
(Fig. 1b). The resulting group average was registered to the native ana-
tomical coordinates of the participant left out of the group analysis, 
and prediction errors were calculated for the right fusiform. Because 
group analyses are standard in neuroimaging, we chose them as 
benchmark models that connectivity-based predictions should meet 
or exceed to be considered useful.
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Figure 2  Benchmark comparisons per participant. 
MAEs in standardized units (s.u.) from the 
connectivity-based predictions are plotted 
against distance or group-average MAEs for each 
participant. Participants above the unity line thus 
have higher (worse) MAEs for the benchmark than 
for the connectivity-based model. Colors reflect 
the difference between the connectivity-based 
model and the benchmark; hotter colors indicate 
better performance of the connectivity-based 
model. (a) For 21 of 23 participants in group 1, 
the distance-based predictions had higher (worse) 
MAEs than connectivity-based predictions, and 
no participants’ functional activation was better 
predicted by distance than by connectivity.  
(b) The connectivity-based model predicted 
actual fMRI activation with fewer errors than 
the group average for 17 of 23 participants, 
whereas 2 participants’ functional activation 
was better predicted by the group average than 
by connectivity. (c) For 18 of 21 participants 
in group 2, connectivity better predicted actual 
activations than distance, whereas no participant’s 
functional activation was better predicted by 
distance than by connectivity. (d) For group 2, 
16 of 21 participants had lower MAEs with the 
connectivity model, whereas 1 participant had 
lower MAEs with the group-average model.
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Figure 3  Actual and predicted fMRI activation to faces > scenes in the 
fusiform gyrus of five example participants. For each participant, actual 
and predicted activation images (t-statistic values for faces > scenes) 
were up-sampled from the DWI structural image (where all the analyses 
were performed) to the same participant’s structural scan and were 
projected onto the participant’s inflated brain surface. Each row is a 
single participant; the leftmost column displays the actual fMRI activation 
pattern in the right fusiform gyrus. The remaining columns illustrate, from 
left to right, predicted fMRI images from connectivity, group average and 
distance. Color scale in standardized units (s.u.).
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We compared model performance and found that the connectivity-
based predictions were statistically better than the group average, 
across participants (two-tailed t-test of connectivity MAE versus 
group average MAE, t22 = −4.01, P = 5.94 × 10−4). The connectivity 
model was significantly more accurate than the group average for  
17 of 23 participants at P < 0.001, whereas the converse was true for 
only 2 participants (Figs. 2 and 3). For the remaining 4 participants, 
the models were not significantly different.

Final connectivity models
We then applied the connectivity and distance models generated by 
group 1 to a separate group of 21 participants, whose connectivity and 
functional data were naive to the models. These analyses were per-
formed in a similar manner, except that the regressions were trained 
on all the participants in group 1 (23 of 23) and applied to the connec-
tivity data from each participant in group 2 to produce images of pre-
dicted activation. We compared these predictions to each participant’s 
observed fMRI image (Table 1 and Fig. 3). The connectivity model 
was significantly more accurate across participants than the distance 
model (t20 = −6.72, two-tailed t-test, P = 1.53 × 10−6). The connectivity- 
based predictions were significantly better than distance-based pre-
dictions in 18 of 21 participants at P < 0.001 (Fig. 2c). The models 
were not significantly different for the remaining 3 participants.

A group average was generated from all participants’ contrast 
images to faces > scenes in group 1 and registered to each participant’s 
own anatomy in group 2. Across participants, the group-average pre-
dictions were significantly less accurate than the connectivity-based 
predictions (t20 = −4.80, two-tailed t-test, P = 1.08 × 10−4). Comparing 
the absolute error within each participant, we found that functional 

activation was better predicted by connectiv-
ity than by the group average–based model 
in 16 of 21 participants at P < 0.001. Only  
1 participant’s fusiform profile was more accu-
rately predicted by the group average than by 
the connectivity model, and the models were 
not significantly different for the remaining 
4 participants (Fig. 2d). The analyses above 
were repeated for face and scene selectiv-
ity in the left fusiform with the same results 
(Supplementary Results and Discussion).

To investigate which targets made a sig-
nificant (P < 0.05) contribution to the final 
model (Table 2), we applied a model built 
from only those significant predictors (with 
all other model coefficients set to 0) to the 
structural connectivity data of group 2. The 
MAE across participants was significantly 
better than the original connectivity mod-
el’s MAE (new model’s MAE, 0.683 ± 0.02;  
P = 0.038), demonstrating the predictive 
impact of these regions. Some of the highest 

positive predictors were right inferotemporal, lateral occipital and 
superior temporal regions, whereas right lingual and parahippocam-
pal cortices were among the highest negative predictors (Fig. 4).

Spatial relationship of function and connectivity
We calculated the center of mass to the best face (inferotemporal) and 
scene (lingual) predictors in each participant to visualize the spatial 
relationship between connectivity and function (Fig. 5a). More sub-
ject variability was observed in the medial–lateral dimension for the 
positive functional activation and in the anterior–posterior dimension 
for the negative functional activation; we therefore calculated cor-
relations between functional values and connectivity strengths along 
those dimensions respectively. Across participants, centroid locations 
for face responses significantly correlated with the centroid locations 
of connectivity to inferotemporal cortex along the medial–lateral 
dimension (Fig. 5b, r = 0.46, P = 0.002). That is, individual partici-
pants who had a more medial center of functional activation to faces 
than other individuals also had a more medial center of connectivity 
to the inferotemporal target region. Similarly, lingual centroids sig-
nificantly correlated with scene centroids along the anterior–posterior 
dimension (Fig. 5c, r = 0.41, P = 0.005).

Table 2  List of target regions that made a statistically significant contribution to the final 
connectivity model
Target Coefficient C.I. Target Coefficient C.I.

R inferior temporal 0.1490 0.137 0.161 R lingual –0.3868 –0.399 –0.375
R lateral occipital 0.0978 0.085 0.111 R parahippocampal –0.1373 –0.149 –0.125
R cerebellum 0.0883 0.076 0.100 L fusiform –0.0638 –0.086 –0.041
R superior temporal 0.0809 0.062 0.100 R inferior parietal –0.0636 –0.081 –0.046
L cerebellum 0.0714 0.050 0.093 L lingual –0.0634 –0.077 –0.050
L inferior temporal 0.0635 0.049 0.078 L parahippocampal –0.0425 –0.058 –0.027
R entorhinal 0.0466 0.036 0.058 L isthmus cingulate –0.0417 –0.055 –0.028
R middle temporal 0.0293 0.015 0.043 R post central –0.0396 –0.059 –0.020
R pars opercularis 0.0271 0.007 0.048 R isthmus cingulate –0.0378 –0.051 –0.025
R thalamus 0.0249 0.007 0.043 R lateral orbitofrontal –0.0340 –0.052 –0.016
L pericalcarine 0.0215 0.002 0.041 R pars triangularis –0.0289 –0.055 –0.002
L middle temporal 0.0199 0.003 0.036 R hippocampus –0.0266 –0.041 –0.012
L temporal pole 0.0145 0.002 0.027 L hippocampus –0.0240 –0.039 –0.009
L lateral orbitofrontal 0.0130 0.001 0.025 R caudal anterior cingulate –0.0234 –0.043 –0.004

L superior temporal –0.0232 –0.042 –0.004
R amygdala –0.0219 –0.033 –0.010
L paracentral –0.0206 –0.033 –0.008
Brain stem –0.0200 –0.035 –0.005
L amygdala –0.0152 –0.027 –0.004

Regions are listed along with their model coefficients and 95% confidence intervals (C.I.). Positive predictors are 
listed on the left, negative predictors on the right. L, left; R, right.
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Figure 4  Model coefficients for each target region from the final 
connectivity model. Target regions are color-coded from hot to cold to 
reflect positive or negative model coefficients and are projected onto the 
right and left pial surfaces of an example participant, with the lateral 
view on the top row, medial view on the second row and ventral view on 
the bottom. The significant predictors of face-selective voxels are regions 
labeled from red to yellow, and the scene-selective predictors are  
labeled from blue to light blue. The seed region is highlighted in purple. 
Medial walls are shown in black and were not included in the analyses. 
See Results for the anatomical nomenclature of the target regions.
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To better establish how individual subject variability in connec-
tivity profiles can be sensitive to individual subject variability in 
functional responses, we tested whether connectivity patterns of one 
participant can better predict that participant’s functional activation 
than another participant’s connectivity patterns. Unlike any of the 
analyses above, this relied on identifying the same voxel spatially 
across participants, so data from each participant in group 2 were reg-
istered to Montreal Neurological Institute (MNI) template space and 
subsequently onto each other participant’s native anatomical space. 
We then made functional predictions for each participant based on 
each other participant’s connectivity pattern. A participant’s own con-
nectivity values were better at predicting their own functional activa-
tion than other participants’ connectivity values (t419 = 11.67, paired 
t-test, P = 0). Thus, the connectivity model is detecting relationships 
between functional responses and connectivity patterns that capture 
individual variation.

DISCUSSION
The present study provides evidence of a direct relationship between 
structural connectivity and function in the human brain. Specifically, 
we demonstrate that the responses to faces within an individual’s right 
fusiform gyrus can be predicted from that individual’s patterns of 
structural connectivity alone. This approach further reveals which 
targets are most influential in predicting function. Voxels with higher 
responses to faces had characteristic patterns of connectivity to other 
brain regions that distinguished them from neighboring voxels with 
lower responses to faces, or higher responses to scenes.

The connectivity model outperformed the random permutation 
control, indicating that there exists a strong relationship between con-
nectivity and function. Moreover, it outperformed the distance control, 
suggesting that spatial information alone is insufficient for predicting 
functional activity and that connectivity offers information above and 
beyond the topographic information inherently embedded in it (owing 
to the posited small-world organization of cortical connectivity24,25). 
The relationship between function and spatial information was highly 
variable across participants, whereas the connectivity data were con-
sistent across participants in relationship to the functional responses. 
When compared to the group-average benchmark, a standard method 
of defining face-selective ROIs in fMRI studies, connectivity was a  
better predictor of the individual’s actual activation pattern in over 
70% of the participants. One reason that the group average did not suc-
cessfully predict the activation pattern could be the high variability of 
activation loci, relative to the standard template (for example, ref. 26).

Although we have treated spatial metrics as potential confounds and 
controlled for them by using distance and group activation models 
as controls, future studies may build other geometric models that do 
predict intersubject variability in functional activation. For example, 
detailed models of cortical folding patterns27, myelination28 and/or 
cortical thickness29 may be detectable with MRI and predictive of 
functional regions. Connectivity can provide a complementary source 
of evidence in some cases, whereas in others it may be the only gross 
morphological marker available.

Despite spatial variability in functional responses, the connectiv-
ity model was highly accurate across participants. We found that the 
spatial distribution of face and scene selectivity varied in tandem 
with connection strength to their most predictive targets. A direct 
analysis of subject-to-subject variability revealed that although each 
participant’s connectivity profile did well at predicting that person’s 
own functional response, it predicts another participant’s functional 
responses relatively poorly. Overall, the connectivity patterns seemed 
highly sensitive to individual variation in function.

Although the results from group 1 were noteworthy, they could 
have been specific to one data set22. The findings from group 2 demon
strate that this is not the case: the connectivity model’s predictions 
from group 1 were much more accurate than both the distance and 
group-average models in more than 70% of the new group of partici-
pants. This result was especially noteworthy because the participants 
in group 2 had been scanned while performing a different functional 
task. The two tasks differed in the type of stimuli presented (1-s static 
images versus 3-s movie clips), type of design (event-related versus 
block), number of runs (1 versus 3) and scan parameters (also see 
Online Methods for other differences). Further, the structural con-
nectivity measures in this second group were acquired using a DWI 
sequence with half as many gradient directions (30 versus 60), indicat-
ing the generalizability of the connectivity model across functional 
tasks and diffusion sequences.

This analysis also revealed the target brain regions for which con-
nectivity with the fusiform was most predictive of face- or scene-
selective activity in the fusiform. Face-selective fusiform voxels were 
predicted by connectivity with regions that have been previously 
reported to function in face processing, such as the inferior and 
superior temporal cortices (for example, refs. 30,31). Scene-selective 
voxels, by contrast, were best predicted by their connectivity to key 
brain areas involved in scene recognition, such as the isthmuscingu-
late (containing the retrosplenial cortex) and the parahippocampal 
cortex10,32,33. Unlike functional connectivity, structural connectivity 
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mass of positively responding voxels along the medial–lateral dimension, along which each participant’s connectivity varied with face selectivity.  
(c) Centroids of lingual connectivity plotted against centroids of negatively responding voxels along the anterior–posterior dimension. Data in b,c are in 
millimeters relative to each participants’ fusiform centroid. Solid lines are the least-square fits of these data; dashed lines, 99% confidence intervals.
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models are naive to the functional responses of the target regions. 
Therefore, a region need not be category selective to be connected 
to (and predictive of) selective voxels in the fusiform. For example, 
we also discovered unexpected predictors of face selectivity, such as 
the cerebellar cortices. Even though the cerebellum is not commonly 
considered as part of the “core” or “extended” face processing net-
work3,30,34, tracer35–37 studies have revealed disynaptic connections 
with extrastriate visual cortices by way of the pons, which tractog-
raphy is able to reconstruct (see Supplementary Figs. 1 and 2) and 
which is corroborated by functional connectivity38. Future studies 
may explore these relationships to further expand on the role of  
functional responses in components of a structural network. New 
structure–function relationships could be investigated in macaques 
with functional and connectivity data, and subsequently validated 
more directly through more invasive techniques involving tracer 
injections (for example, refs. 39,40).

The final connectivity model also provides a framework with which 
to evaluate the impact of the most predictive targets and their spatial 
distribution. The model built from only the significantly predictive 
targets resulted in more accurate predictions than the model based on 
all of the target regions. Although some of the best predictors from this 
model were nearby regions, most of them were distant to the fusiform; 
further analyses excluding the fusiform’s neighbors (Supplementary 
Results and Discussion) revealed that although proximal targets are 
part of the fusiform’s network, they do not fully account for the con-
nectivity model’s performance. Altogether, a distributed network of 
brain regions characterizes category-specific visual processing in the 
fusiform gyrus.

The connectivity fingerprint has practical applications, both for 
defining ROIs independently of a task and also for exploring group 
differences in structural connectivity signatures. Researchers or  
clinicians can apply the relationships discovered here to predict func-
tional activation at the single-subject level in populations who do not 
or cannot have a functional localizer, and they should expect that 
this will be a more accurate prediction than group-based methods. 
The connectivity model provided here can also be directly compared 
to a connectivity model built from study participants with specific 
conditions or lesions. For instance, compromised structural connec-
tivity in individuals with congenital prosopagnosia has previously 
been suggested to influence their deficits in face recognition, in light 
of their surprisingly normal functional activation in the fusiform41. 
This type of analysis can shed light on which components (if any) of 
the fusiform connectional fingerprint are altered or compromised in 
individuals with congenital prosopagnosia. A similar analysis can be 
used to explore possible substrates of face-processing differences in 
autism, normal development and aging.

Future studies can also extend the present methods to other 
brain regions and contrasts that are commonly used as functional 
localizers, such as retinotopy in visual cortices, scene selectivity in 
the parahippocampal place area10 or expression specificity in the 
superior temporal sulcus. In some cases, more complex or non
linear approaches might better capture the relationship of connec-
tivity and function. We implemented a linear fit to provide more 
parsimonious interpretations and to establish the feasibility of  
modeling structure–function relationships. Since these relationships 
are probably not strictly linear in a complex system such as the brain 
(Supplementary Fig. 3), future work can expand these findings, 
creating better models and elucidating a more detailed relationship 
between connectivity and function. Also, voxel-to-voxel tractog
raphy may help to more finely characterize the structure–function 
relationships identified here.

These findings open a window into the coupling between struc-
tural and functional organization in the brain. The operations of a 
brain region are determined by both its intrinsic properties (such as 
cytoarchitecture) that likely determine the operations that it can per-
form and by the extrinsic connectivity that defines the input–output  
relations of that brain region. Neuroimaging can relate localized func-
tions (determined by means of fMRI) to input–output patterns of 
cortical connectivity (determined by means of probabilistic tractog
raphy) in an individual. The present findings demonstrate that brain 
structure–function relations can be defined for category-selective 
functional activation.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Participants. For group 1, 23 participants between the ages of 19 and 42 (mean 
age = 27.9 ± 1.06, 12 female) were recruited from the greater Boston area. Group 2  
included 21 participants between the ages of 19 and 44 (mean age = 26.9 ± 1.45,  
13 female) who were similarly recruited. Both groups of participants were screened 
for history of mental illness, gave written informed consent and were compensated 
at $30 per hour. The studies were approved by the Massachusetts Institute of 
Technology and Massachusetts General Hospital ethics committees.

Acquisition parameters for group 1. DWI data were acquired using echo planar 
imaging (64 slices, voxel size 2 × 2 × 2 mm, 128 × 128 base resolution, diffusion 
weighting isotropically distributed along 60 directions, b-value 700 s mm−2) on 
a 3-T Siemens scanner with a 32-channel head-coil42. A high-resolution (1 mm3) 
three-dimensional magnetization-prepared rapid acquisition with gradient echo 
(MPRAGE) scan was acquired on these participants.

We acquired event-related fMRI data (gradient echo sequence 2,000 ms TR, 
30 ms TE, 90° flip, 324 volumes, 3.1 × 3.1 × 4.0 mm voxel size) while the same 
participants viewed color images of faces or scenes while indicating any immedi-
ate repetition of an image with a button press. Face stimuli (IASLab, http://www.
affective-science.org/) consisted of neutral and emotional faces (angry, disgusted 
and happy). Scene stimuli were all neutral outdoor and indoor scenes43 (http://
cvcl.mit.edu/database.htm). Face and scene stimuli were ordered using optseq2 
(http://surfer.nmr.mgh.harvard.edu/optseq/)44, an optimization program for  
jittering trials in event-related experiments.

Acquisition parameters for group 2. DWI acquisition parameters for  
group 2 were different, with 30 directions of diffusion, 64 slices, voxel size  
2 × 2 × 2 mm, 128 × 128 base resolution, b-value 700 s mm−2, but were acquired 
on the same scanner with the same 32-channel head-coil as group 1. A high-
resolution (1 mm3) three-dimensional MPRAGE scan was also acquired on 
these participants.

Stimuli for the fMRI consisted of 3-s movie clips of faces, bodies, scenes, 
objects and scrambled objects. Movies of faces and bodies were filmed against 
a black background and framed to reveal just the faces or bodies of seven chil-
dren, shown one at a time. Scenes consisted primarily of pastoral scenes filmed 
through a car window while driving slowly through the countryside or suburb. 
Objects were selected specifically to minimize any suggestion of animacy of the 
object itself or of an invisible actor pushing the object. Scrambled object clips 
were constructed by dividing each object movie clip into a 15 × 15 box grid and 
spatially rearranging the location of each of the resulting boxes. Pilot testing 
indicated that a contrast of the response for moving faces versus moving objects 
identified the same FFA as that identified in a standard static localizer. Further 
studies in adults show that the FFA responds similarly to movies of faces as to 
static snapshots of faces45.

Functional data were acquired over four block-design functional runs (gra
dient echo sequence 2,000 ms TR, 30 ms TE, 90° flip, 234 volumes, 3 × 3 × 3 mm  
voxel size). Each functional run contained three 18-s fixation blocks at the  
beginning, middle and end of the run. During these blocks, a series of six uniform 
color fields were presented for 3 s each. Each run also contained two sets of five 
consecutive stimulus blocks (faces, bodies, scenes, objects or scrambled objects) 
sandwiched between these rest blocks, resulting in two blocks per stimulus cat-
egory per run. Each block lasted 18 s and contained six 3-s movies clips from each 
of the five stimulus categories. The order of stimulus category blocks in each run 
was palindromic, and specific movie clips were chosen randomly to be presented 
during the block. Participants were asked to passively view the stimuli.

Functional magnetic resonance imaging analysis. For group 1, functional 
neuroimaging data were analyzed using Statistical Parametric Mapping software 
(SPM8, Wellcome Department of Cognitive Neurology, London). Preprocessing 
included slice timing correction, motion correction and linear trend, and tem-
poral filtering with a 128s cutoff. The images were not spatially normalized. 
Statistical parametric maps of blood oxygenation level–dependent (BOLD) acti-
vation were created using a multiple regression analysis, with regressors defined 
for the five stimulus categories (neutral, angry, disgusted and happy faces, and 
scenes). Boxcar functions for each trial type were convolved with a standard  
double-gamma hemodynamic function (SPM8, http://www.fil.ion.ucl.ac.uk/
spm/) to generate each regressor. The resulting maps were spatially smoothed 

with a 6-mm (full width at half maximum) Gaussian kernel, and the t-statistic 
image was generated per participant for the contrast of faces > scenes.

Group 2’s data were analyzed with FSL software (http://www.fmrib.ox.ac.uk/fsl/). 
Image preprocessing was similar to group 1: images were motion corrected, smoothed 
(5 mm Gaussian kernel, full width at half maximum) and detrended, and were fit 
using a standard gamma function (δ = 2.25 and τ = 1.25). Data were not spatially 
normalized. Statistical modeling was then performed using a general linear model 
on the preprocessed functional images. Next, t-maps corresponding to the contrast  
of interest for faces > scenes were overlaid on each participant’s high-resolution  
anatomical image.

For both groups, each participant’s functional image for the faces > scenes 
contrast was registered to his or her diffusion-weighted image. Because we 
were interested in predicting relative activation values that were independent 
of task-specific parameters such as the degrees of freedom, we standardized the 
t-statistic values (x) across the fusiform gyrus per participant. This detrending 
was performed for each participant j, such that the mean value in the fusiform 
was subtracted from each voxel’s fMRI value (xij) and divided by the s.d. The 
standardized value per fusiform voxel (xzij) of participant j was then used for the 
subsequent regression models.

Tractography. Automated cortical and subcortical parcellation was performed 
with FreeSurfer46,47 to define specific cortical and subcortical regions in each 
individual’s T1 scan, using a published atlas48. Automated segmentation results 
were reviewed for quality control and were then registered to each individual’s 
diffusion images and used as the seed and target regions for fiber tracking. The 
resulting cortical and subcortical targets were then checked and corrected for 
automatic parcellation or segmentation errors if necessary. There was one seed 
region per participant, and the 85 target regions were defined as all other auto-
matic parcels, not including the seed. The principal diffusion directions were 
calculated per voxel, and probabilistic diffusion tractography was carried out 
using FSL-FDT17,49 with 25,000 streamline samples in each seed voxel to create 
a connectivity distribution to each of the target regions, while avoiding a mask 
consisting of the ventricles.

Regressions. All analyses were performed on subject-specific anatomy, rather 
than extrapolation from a template brain, except for the group-average models. 
For the regression models, each observation was an individual voxel in native 
space, and there was no identifying or matching of spatial location of voxels 
across participants. Further, the model was blind to the participant each voxel 
belonged to.

On group 1, we built a regression model using LOOCV: the model was 
trained to predict the standardized fMRI value for each native-space fusiform 
voxel based on connectivity data concatenated across 22 of 23 participants and 
was tested using the remaining participant’s data (Fig. 1a). This was performed 
iteratively for all participants. For group 2, the analyses were performed in a 
similar manner, except that the regressions were performed on all the partici-
pants in group 1 (23 of 23) and simply applied to each participant in group 2’s 
connectivity data to produce an fMRI image of predicted activation. This was 
then compared to the participants’ own observed fMRI images, and MAEs 
were calculated.

Using the same LOOCV method, we trained a regression model to predict 
t-values of fusiform voxels based on each voxel’s physical Euclidian distance to 
each other target region’s center of mass, rather than each voxel’s connection 
probability to each target region. In this way, the connectivity and distance models 
had the same number of dimensions and were generated identically except for 
the information present in each model. We also considered other 85-dimensional 
spatial metrics, such as distance to the nearest voxel of each target, and found that 
these measures were highly similar to the present one. We applied the regression 
coefficients from the distance model generated from all group 1 participants to 
each participant in group 2, as described for the connectivity model.

We created random distributions by training models using the observed fMRI 
images and connection probabilities but randomizing the voxel data. We per-
muted across 5,000 random combinations of connection probability to fMRI 
activation values per participant and thus obtained a distribution of random MAE 
per participant. We then performed a one-tailed t-test to determine whether the 
mean of the participant’s random distribution was significantly greater than the 
same participant’s MAE for connectivity-based predictions.

http://www.affective-science.org
http://www.affective-science.org
http://cvcl.mit.edu/database.htm
http://cvcl.mit.edu/database.htm
http://surfer.nmr.mgh.harvard.edu/optseq/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
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Each participant’s functional data were spatially normalized into MNI space 
with FSL and FreeSurfer, checked and corrected for registration errors, and super-
imposed to create composite maps. For group 1 cross-validation, we performed 
LOOCV: a random-effects test on whole-brain fMRI data was performed with 
SPM8 on the contrast images for faces > scenes from all but one participant. 
The resulting t-statistic image, which was based on all the other participants in 
normalized space, was applied to the participant left out of the group analysis 
and was registered back into his or her native space. We analyzed only the right 
fusiform gyrus in comparing the group average prediction to that participant’s 
actual fMRI image using measures of MAE (Fig. 1b).

For group 2, we created the group average fMRI image using the same method 
above, but from all group 1 participants’ observed (actual) fMRI images. This 
fMRI image was mapped onto each participant in group 2’s native-space coordi-
nates and compared to that participant’s observed fMRI pattern.

Accuracy and benchmark comparisons. As a measure of accuracy, we measured 
the absolute error per voxel (reported in standardized units) per participant, 
by calculating the absolute difference between the predicted and actual values.  
To statistically compare the performance of the connectivity model to the random  
and benchmark models, we performed a pairwise t-test per participant across 
all their fusiform voxels. A criterion threshold of P < 0.001 was used to report 
the number of participants whose activation pattern was better predicted by  
one model versus another. Mean absolute error (MAE) was also calculated per 
participant for each model by averaging the absolute error across the fusiform 
voxels. A two-tailed Student’s t-test of the MAEs per participant was then used 
to compare models, with the same threshold (P < 0.001) to decide which model’s 
predictions were significantly better.

Spatial relationship of function and connectivity. We registered the connec-
tivity data for the right inferotemporal and lingual targets to the native-space 
anatomical image of each participant in groups 1 and 2 and projected these data 
to each participant’s native surface vertices using FreeSurfer. The functional data 
were similarly projected to the surface. We calculated the center of mass for the 
targets with respect to a reference frame fixed at the center of mass for each 
participant’s fusiform gyrus (also on the surface). After partitioning the func-
tionals into positive and negative values, we similarly calculated their centers 

of mass with respect to the fusiform. We observed more subject variability in 
the medial–lateral dimension for the positive functionals and more anterior–
posterior variability for the negative functionals, and we therefore calculated 
correlations between functional values and connectivity strengths along those 
dimensions respectively. Since both functional and connectivity centers of mass 
were calculated with respect to the subject’s own fusiform, the correlations were 
not biased by cross-subject variability in the boundaries between the seed region 
and the predictive regions.

For the direct analyses of individual subject variation, we registered each 
group 2 participant’s connectivity data to MNI space, and subsequently onto each 
other participant’s brain, using FreeSurfer and FSL registration tools. We then 
applied the final model designed from group 1 to both the original participant’s 
and registered participant’s connectivity values. This was done for all combina-
tions of participant pairs (420). We then compared the MAEs from predictions 
built from each participant’s own connectivity with those built from another 
participant’s connectivity across all participants in group 2. All of the above 
predictions were restricted to those voxels that overlapped between the original 
and registered participants.
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