
















from the network). In k-core decomposition, several subnet-
works (called k-cores) are identified by successively removing
all nodes of a network with degree smaller than k until all
remaining nodes have a degree equal to or larger than k (e.g.,
remove a parcel with the lowest degree, see if its neighbors are
connected with any other parcel, remove the neighbors too
if they now have a low degree, etc.). Each successive k-core con-
tains increasingly robust nodes and the largest k-cores constitute
the structural backbone of a network (e.g., Hagmann et al. 2008).
Using this approach, we computed the core number for each par-
cel; parcels with larger k-cores would thus constitute the deepest
foundations of the FRNs. We wanted to know whether the foun-
dations of the FRNs were also the most selective for each con-
trast, so we correlated each parcel’s core number with its
selectivity. For all 4 contrasts, we observed a significant positive
correlation between core number and selectivity (Faces: r = 0.36,
P = 8.18 × 10� 6; Bodies: r = 0.23, P = 4.79 × 10� 3; Scenes: r = 0.30, P =
2.22 × 10� 4; Objects: r = 0.47, P = 1.55 × 10� 9). Thus, the central
core of the FRNs is composed of the most selective parcels; con-
versely, nonselective parcels make up the more peripheral com-
ponents of the FRNs.

Discussion
Wehypothesized that extrinsic anatomical connectivitymirrors
functional selectivity at a fine spatial grain (voxelwise) across
the human cortex, such that the unique connectivity fingerprint
of voxels may be used to predict neural responses throughout
the brain, and acrossmany functions.We tested this hypothesis
for high-level visual functions using a novel method of directly
linking DWI and fMRI in the same individuals (Saygin et al.
2012).

Connectivity Can Predict Neural Selectivity
at a Voxel-Wise Scale

For each functional contrast, we found that voxel-wise fMRI ac-
tivity of an individual can be predicted using only their DWI
connectivity patterns. There is great functional diversity with-
in cortical regions and our results demonstrate that specific
connectivity patterns may be important for this functional
diversity at a fine spatial grain. Future studies may use the pre-
sent approach to gain a more detailed understanding of the

Figure 4. Predictive accuracy across subjects for connectivity versus group-analysis benchmark. For each of the fROIs (depicted on the inflated brains, see Julian et al. (2012)

for ROI nomenclature), we calculated the percentage of subjects whose connectivity patterns better predicted their activation patterns than a group-based prediction

(paired t-test of voxel-wise prediction errors for connectivity vs. group average per subject, P < 0.05 Bonferroni corrected for total number of fROIs times the total

number of subjects across both groups, i.e., 26 × 19) in (a) the cross-validation group (group 1) and (b) replication test group (group 2). Lighter colors indicate left-

hemisphere fROIs (some fROIs did not have a left-hemisphere counterpart).
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structure-function relationship of voxel-wise preferences for
specific stimuli or selectivity for subordinate categories (e.g., in-
dividual faces or specific body parts).

Further, by treating each voxel as a unique entity in both con-
nectivity and function, this approach can be used to explore the
gradient of functional responses across the cortex while remain-
ing agnostic about whether discrete brain modules exist. Future
studies can explore the topology of connectivity profiles in great-
er detail and discover whether connectivity fingerprints exhibit
sharp spatial boundaries thatmay correspond with the boundar-
ies of putative functional modules.

Connectivity Can Predict Neural Selectivity Throughout
Human Cortex

These results replicate prior work showing that the fusiform
gyrus has specialized connectivity patterns that underlie face
perception (Saygin et al. 2012). But importantly, these findings
demonstrate that the tight relationship between connectivity

and function also exists across other components of the face pro-
cessing network. Further, bymodeling selectivity as a function of
connectivity across the brain, we were able to compare the rela-
tionship between neural selectivity andmodel fit across anatom-
ical parcels. This allows us to addresswhether this relationship 1)
holds equally across cortical regions, 2) is specific to certain par-
cels, or 3) is strongest in themost selective parcels. Our data show
a tight relationship between connectivity and function across the
cortex, but a stronger relationship for each contrast in parcels
that contain the greatest selectivity for that contrast. Thus,
some of the strongest predictions were found for face selectivity
around the fusiform gyrus where connectivity accounted for 30%
of the functional variance across voxels and across participants,
and for object selectivity in lateral occipital cortex, where con-
nectivity accounted for 32% of the functional selectivity across
voxels. These results indicate that extrinsic connectivity bears
a close relationship to functional selectivity across the cortex.

Although the model fits increased with the selectivity of the
parcel for the contrast in question, it is difficult to disentangle

Figure 5. Model fits positively correlate with functional selectivity per anatomical parcel. The fits or R2 values for the final models of connectivity and function per

anatomical region were significantly and positively correlated with the mean absolute contrast responses for voxels in the 5th percentile for each parcel. These values

reflect the response selectivity of each parcel to the functional contrast, (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects. Parcelswith bettermodel fits had greater functional

selectivity for that functional contrast.
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this effect from the reliability of the functional response in a
given parcel. It remains unclear whether connectivity may also
fit parcels with reliable fMRI responses but low selectivity for a
contrast. Future studies can model the within-subject fMRI re-
sponses (e.g., across a large number of experimental runs) for
each voxel as a repeated measure, and calculate whether voxels
with high selectivity (and high stability across runs) are better
modeled by connectivity than voxels with lower selectivity but
high stability.

Connectivity Can Predict Neural Selectivity across a
Range of Functions

These results extendpriorworkon face selectivity in the fusiform
gyrus (Saygin et al. 2012) not only to all of cortex, but also to other
high-level visual categories. Substantial evidence suggests that
faces are a special perceptual category for humans and other so-
cial animals (e.g., Kanwisher 2010; McKone and Robbins 2011;
Kanwisher and Dilks 2014), and so the tight relationship between
connectivity and neural responses might have been restricted
to face selectivity. Indeed, we found that connectivity most
accurately predicted responses to faces and scenes, perhaps

reflecting the evolutionary significance of these 2 categories.
Nonetheless, the neural responses for other visual categories
were also accurately predicted from connectivity alone. This find-
ing provides evidence in support of the fundamental assumption
that extrinsic connections underlie brain function in general, and
not only for select categories. However, the present experiment
only tested high-level visual categories and whether this as-
sumption also holds for other domains such as audition, mem-
ory, or language remains untested. Future studies can use the
present approach to test the connectivity–function relationship
in other domains.

Further, our results showed that connectivity was a better
predictor of fMRI responses to visual categories than the only
other current method for predicting voxel-wise brain function
in the absence of an fMRI scan in the subject in question: a
group analysis of the same functional contrast in a different
set of subjects. The fact that functional predictions were more
accurate from the same subject’s diffusion data than from
group data on the same functional contrast shows that individ-
ual connectivity was able to account for individual function.
That is, connectivity was able to capture an individual’s func-
tional responses above and beyond what is common across

Figure 6. Model fits positively correlate with MVPA accuracy per anatomical parcel. The fits or R2 values for the final models of connectivity and function per anatomical

region were significantly and positively correlated with MVPA accuracies to each functional contrast, which reflect the cooperative selectivity of the response patterns

across voxels within each region (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects. Parcels with better model fits had higher MVPA accuracy for that functional contrast.
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individuals. Indeed, we found that the DWI predictions of voxel-
wise functional response even had accuracy comparable with a
second functional scan in the same subject on the same con-
trast (Supplementary Fig. 1). The use of connectivity to predict
voxel-wise functional responses has substantial promise clinic-
ally, for example for determining functionally selective regions
of cortex in individuals who cannot be functionally scanned
(because they are comatose, unable to perform the tasks

required for functional scanning, or unable to lie still without
sedation).

Predicting Neural Function from Connectivity Reveals
Functionally Relevant Networks

Among the multitude of connections within any voxel, only a
subset of connections may be especially relevant to a particular

Figure 7. Functionally relevant networks. The functionally relevant networks (FRNs) for (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects are visualized as directed graphs.

Left column: right lateral surface; center column: left lateral surface; right column: ventral surface (with right hemisphere on top). In this graphical view, nodes reflect

parcels, and edges are the anatomical connections that are significant predictors of neural responses. Edges originate from significant predictors, and their arrows

point toward the parcels whose neural responses are predicted. For example, if node A predicts node B, then an arrow would originate from node A and point toward

node B. Node size scales with selectivity, such that larger spheres represent parcels with higher selectivity.

12 | Cerebral Cortex

 at H
arvard L

ibrary on M
arch 21, 2015

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu303/-/DC1
http://cercor.oxfordjournals.org/


function of interest. Indeed, it is possible that even a majority of
connections are not involved in the primary function of a region.
For example, <5% of the inputs tomacaque primary visual cortex
V1 arrive from the optic radiations (Peters et al. 1994), which are
obviously critical for visual responses in V1. This consideration
highlights the need to extract, out of the overwhelmingly com-
plex connectivity patterns, the connections that most strongly
influence the neural responses for a particular stimulus or behav-
ior.We need to parse brain connectivity in a functional context in
order to decipher the impact of each connection in defining a re-
gion’s functional properties (see Lee and Reid 2011; Seung 2011;
Reid 2012).

The novel approach used here enables us to identify the con-
nections that are relevant for predicting different functional se-
lectivities, or the FRNs for each fMRI contrast. These networks
offer rich information about the connections that are predictive
in each parcel and for each contrast. We created directed graphs
of the FRNs and analyzed them using graph theoretical metrics.
Previous studies have used graph theoretical approaches to ana-
lyze structural connectivity networks; these studies commonly
relate their findings to functional and/or lesion studies to better
elucidate how anatomical connections support neural functions
(e.g., He et al. 2007; Bullmore and Sporns 2009). In the present
study, we use similar graph theoretical approaches to directly

analyze the structural networks that are predictive for each of
the functional contrasts tested.

We found that the more selective a parcel is, the more fre-
quently its connectivity predicts function in other areas (i.e., de-
gree correlates with selectivity). Unlike functional connectivity,
structural connectivity is naïve to the functional responses of
the target regions; a region need not possess similar functional
characteristics to be connected to (and predictive of function in)
another region. Further, the connectivity models in our analyses
only had information about the connection strength of the pre-
dictors, not their functional responses; it is notable that the
most selective parcels were themselves predictors of function
across the brain, even without any explicit modeling of the func-
tional responses of connected regions. An alternative outcome
could have been that the most selective parcels do not directly
predict selectivity elsewhere, and instead share predictive infor-
mation with the rest of the brain through their connections with
intermediary hub nodes (such as those elucidated in Hagmann
et al. 2008; Iturria-Medina et al. 2008; Gong et al. 2009). Our ana-
lyses instead show that visual categorical responses across the
brain are predicted by connectivity with the most selective
brain regions.

We also found that the clustering coefficient of each parcel
was significantly correlated with the selectivity of the parcel for

Figure 8. Schematic of whole-brain network analyses. (a) A final model (ƒ(x)) for each parcel and for each contrast is computed (see Fig. 1). (b) ƒ(x) from all parcels are

concatenated to yield a 148 × 148 matrix; rows are seed parcels and columns are target parcels (predictors). This matrix is then (c) binarized based on significance (i.e.,

each ƒ(x) is assigned 1 or “true” for coefficients that make a significant contribution to the model). This matrix is the functionally relevant network (FRN) for a

particular fMRI contrast. Here, black squares are “true” (i.e., significant predictors) and white squares are false; the diagonal is white because a parcel cannot predict

itself. (d) A closer look at a few rows of an FRN illustrates the type of information that can be gleaned about a network. For example, in the FRN for Face responses,

parcels 3 and 7 predict responses in parcel 1, but parcel 1 does not predict parcels 3 and 7; instead, parcel 3′s responses are predicted by 7 and vice versa. We can

represent this relationship as a directed network, with arrows pointing “from” the predictors “to” the parcels that they predict. This network diagram is used to

visualize the predictor–predictee relationship for all parcels for each contrast (see Fig. 7). (e–g) We further explored this complex network using graph theory and

calculated 3 metrics that reflected the role of each parcel in predicting responses in other parcels. The values for each of these metrics are shown in the nodes of a

rhetorical network. (e) We calculated out-degree, which is the number of times each parcel was predictive of functional responses in every other parcel. (f ) We also

calculated the clustering coefficient of each parcel, which measures how interconnected the secondary network of a node is (e.g., a parcel with a high clustering

coefficient would predict function in a set of other parcels, and these parcels would also predict function in one another). (g) Lastly, we calculated the core number

of each parcel using k-core decomposition, which identifies the underlying backbone of a network through iterative pruning of nodes. We identified subnetworks

(k-cores) by successively removing all nodes with a degree smaller than k until all remaining nodes have a degree equal to or larger than k (e.g., prune nodes with

degree less than k; if the resulting subnetwork contains nodes with degree less than k, remove them, until all nodes have degree of at least k). Each successive k-core

contains a deeper infrastructure of interconnected components. The core number of a node is the highest k-core that it belongs to.
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all 4 contrasts. High clustering coefficients are commonly asso-
ciated with cliques, or highly interconnected groups of nodes
(Watts and Strogatz 1998). Our results suggest that the most se-
lective parcels form cliques, in which selective parcels are both
predictive “of” one another and predicted “by” one another.

Furthermore, we found significant correlations between se-
lectivity and core number. This signifies that the most selective
parcels also constitute the most foundational elements of the
FRNs and that their connectivity patterns form a structural core
for predicting visual selectivities throughout the brain. It is
worth noting that the network metrics used to analyze the
FRNs are related to one another. For example, parcels that are
members of interconnected cliques may tend to have higher
core numbers, and the core number of a parcel can only be as
large as its degree; butwhile a high degree is necessary for having
a high core number, it is not sufficient. Core numbers are sensi-
tive to the overall neighborhood of each node, and depend on
the features of connected nodes, as well as their own. Thus, the
3 graph theoretical metrics that we use here elucidate different
features of the FRNs and the role of each parcel within that larger
network. Future work may further characterize and contrast the
architecture of various FRNs with more complex graphical ap-
proaches (e.g., modularity, identification of hub nodes, and over-
all network structure). It will also be important to expand this
approach to retinotopic regions, in order to better characterize
FRNs from early visual areas to higher level regions.

Other Future Directions and Conclusions

The stimulus categories used in the present experiment re-
present some of the most robust and replicable perceptual do-
mains, and thus it remains possible that the tight relationship
between connectivity and function holds only for these mental
functions. Connectivity may be unable to account for functional
and intersubject variability in higher level processes, such as de-
cision-making or emotional reappraisal. Testing other, particu-
larly nonperceptual domains will be necessary to understand
whether the relationship between connectivity and neural re-
sponses is a general principle of brain organization. Other future
directions may include amassing a database of functional tasks
and their predictability through connectivity, allowing research-
ers to predict the functional response to a variety of tasks within
any single subject, yet requiring only the acquisition of a single-
shot diffusion scan.

This approach also opens up the possibility of addressing a
fundamentally important question about the developmental ori-
gins of functional specialization: does extrinsic connectivity in-
struct and direct the functional development of the cortex? In
the current paper, we observed a tight relationship between ex-
trinsic connectivity and function in adults, which would be ex-
pected if pre-existing connectivity fingerprints play a causal
role in subsequent development of functional specialization. Re-
searchers will not only be able to use this novel method to study
the differentiation of connectivity patterns across the cortex in
early development, but also ascertain whether connectivity pat-
terns early in life determine subsequent differentiation of
function.

The current results open awindow into the coupling between
the structural organization of the brain and its functional special-
ization. Other anatomical factors, such as intrinsic connectivity
or cytoarchitecture, undoubtedly play a key role in determining
the functional responses of a region. Recent work suggests that
cortical folding patterns and other macroanatomical landmarks
may also allow trained observers to locate high-level visual

regions (Grill-Spector andWeiner 2014;Weiner et al. 2014). Future
studies can combine connectivity information withmacroanato-
mical landmarks to generate individual subject predictions, and
evaluate the contribution of these various anatomical factors in
predicting function. Our analyses nonetheless revealed that, in
the absence of any other information, the input–output relations
of a region (i.e., its extrinsic connections) may be used to accur-
ately predict functional clusters that are variable across the popu-
lation. And although we cannot distinguish between input and
output with DWI, the present findings demonstrate that func-
tionally specialized cortical regions send and receive specialized
projections for category-selective visual function at a fine spatial
grain across the human cortex.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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